Konrad Koszinowski

Find an error

Name:
Organization: Georg-August-Universit?t
Department: 1 Department Chemie
Title:

TOPICS

Co-reporter:Marlene Kolter;Katharina Böck; Konstantin Karaghiosoff; Konrad Koszinowski
Angewandte Chemie 2017 Volume 129(Issue 43) pp:13427-13431
Publication Date(Web):2017/10/16
DOI:10.1002/ange.201707362
AbstractPalladium-At-Komplexe gelten als wichtige Zwischenstufen in Heck- und Kreuzkupplungsreaktionen, haben sich aber bisher einer Charakterisierung auf molekularer Ebene weitgehend entzogen. Mithilfe der Elektrosprayionisierungs-Massenspektrometrie, Messungen der elektrischen Leitfähigkeit und NMR-Spektroskopie wird hier gezeigt, dass der elektronenarme Katalysator [L3Pd] (L=Tris[3,5-bis(trifluormethyl)phenyl]phosphan) bereitwillig mit Br− zum anionischen, nullwertigen At-Komplex [L3PdBr]− reagiert. Elektronenreichere Pd-Katalysatoren weisen dagegen eine geringere Tendenz zur Bildung von At-Komplexen auf. Die Kombination von [L3Pd] mit LiI und einem Aryliodid ArI führt zur Entstehung des PdII-At-Komplexes [L2Pd(Ar)I2]−.
Co-reporter:Etienne V. Brouillet, Alan R. Kennedy, Konrad Koszinowski, Ross McLellan, Robert E. Mulvey and Stuart D. Robertson  
Dalton Transactions 2016 vol. 45(Issue 13) pp:5590-5597
Publication Date(Web):22 Feb 2016
DOI:10.1039/C6DT00531D
The cationic magnesium moiety of magnesium organohaloaluminate complexes, relevant to rechargeable Mg battery electrolytes, typically takes the thermodynamically favourable dinuclear [Mg2Cl3]+ form in the solid-state. We now report that judicious choice of Lewis donor allows the deliberate synthesis and isolation of the hitherto only postulated mononuclear [MgCl]+ and trinuclear [Mg3Cl5]+ modifications, forming a comparable series with a common aluminate anion [(Dipp)(Me3Si)NAlCl3]−. By pre-forming the Al–N bond prior to introduction of the Mg source, a consistently reproducible protocol is reported. Usage of the green solvent 2-methyltetrahydrofuran in place of THF in the context of Mg/Al battery electrolyte type complexes is also promoted.
Co-reporter:Sebastian Weske;Ramona Schoop ;Dr. Konrad Koszinowski
Chemistry - A European Journal 2016 Volume 22( Issue 32) pp:11310-11316
Publication Date(Web):
DOI:10.1002/chem.201601261

Abstract

Trifluoromethylation reactions have recently received increased attention because of the beneficial effect of the trifluoromethyl group on the pharmacological properties of numerous substances. A common method to introduce the trifluoromethyl group employs the Ruppert–Prakash reagent, that is, Si(CH3)3CF3, together with a copper(I) halide. We have applied this method to the trifluoromethylation of aromatic alkynes and used electrospray-ionization mass spectrometry to investigate the mechanism of these reactions in tetrahydrofuran, dichloromethane, and acetonitrile as well as with and without added 1,10-phenanthroline. In the absence of the alkyne component, the homoleptic ate complexes [Cu(CF3)2] and [Cu(CF3)4] were observed. In the presence of the alkynes RH, the heteroleptic complexes [Cu(CF3)3R] were detected as well. Upon gas-phase fragmentation, these key intermediates released the cross-coupling products R−CF3 with perfect selectivity. Apparently, the [Cu(CF3)3R] complexes did not originate from homoleptic cuprate anions, but from unobservable neutral precursors. The present results moreover point to the involvement of oxygen as the oxidizing agent.

Co-reporter:Christoph Schnegelsberg;Sebastian Bachmann;Marlene Kolter;Thomas Auth;Dr. Michael John;Dr. Dietmar Stalke;Dr. Konrad Koszinowski
Chemistry - A European Journal 2016 Volume 22( Issue 23) pp:7752-7762
Publication Date(Web):
DOI:10.1002/chem.201600699

Abstract

Grignard reagents RMgCl and their so-called turbo variant, the highly reactive RMgCl⋅LiCl, are of exceptional synthetic utility. Nevertheless, it is still not fully understood which species these compounds form in solution and, in particular, in which way LiCl exerts its reactivity-enhancing effect. A combination of electrospray-ionization mass spectrometry, electrical conductivity measurements, NMR spectroscopy (including diffusion-ordered spectroscopy), and quantum chemical calculations is used to analyze solutions of RMgCl (R=Me, Et, Bu, Hex, Oct, Dec, iPr, tBu, Ph) in tetrahydrofuran and other ethereal solvents in the absence and presence of stoichiometric amounts of LiCl. In tetrahydrofuran, RMgCl forms mononuclear species, which are converted into trinuclear anions as a result of the concentration increase experienced during the electrospray process. These trinuclear anions are theoretically predicted to adopt open cubic geometries, which remarkably resemble structural motifs previously found in the solid state. The molecular constituents of RMgCl and RMgCl⋅LiCl are interrelated via Schlenk equilibria and fast intermolecular exchange processes. A small portion of the Grignard reagent also forms anionic ate complexes in solution. The abundance of these more electron-rich and hence supposedly more nucleophilic ate complexes strongly increases upon the addition of LiCl, thus rationalizing its beneficial effect on the reactivity of Grignard reagents.

Co-reporter:Moritz Schubert;Peter Franzmann;Dr. Anica WünschevonLeupoldt;Dr. Konrad Koszinowski;Dr. Katja Heinze;Dr. Siegfried R. Waldvogel
Angewandte Chemie International Edition 2016 Volume 55( Issue 3) pp:1156-1159
Publication Date(Web):
DOI:10.1002/anie.201508035

Abstract

Molybdenum pentachloride is an unusually powerful reagent for the dehydrogenative coupling of arenes. Owing to the high reaction rate using MoCl5, several labile moieties are tolerated in this transformation. The mechanistic course of the reaction was controversially discussed although indications for a single electron transfer as the initial step were found recently. Herein, based on a combined study including synthetic investigations, electrochemical measurements, EPR spectroscopy, DFT calculations, and mass spectrometry, we deduct a highly consistent mechanistic scenario: MoCl5 acts as a one-electron oxidant in the absence of TiCl4 and as two-electron oxidant in the presence of TiCl4, but leads to an over-oxidized intermediate in both cases, which protects it from side reactions. In the course of aqueous work-up the reagent waste (MoIII/IV species) acts as reducing agent generating the desired organic C−C coupling product.

Co-reporter:Moritz Schubert;Peter Franzmann;Dr. Anica WünschevonLeupoldt;Dr. Konrad Koszinowski;Dr. Katja Heinze;Dr. Siegfried R. Waldvogel
Angewandte Chemie 2016 Volume 128( Issue 3) pp:1168-1172
Publication Date(Web):
DOI:10.1002/ange.201508035

Abstract

Molybdänpentachlorid ist ein effizientes Reagens für die dehydrierende Kupplung von Arenen. Wegen der hohen Reaktionsgeschwindigkeit bei der Umsetzung mit MoCl5 wird eine Reihe von labilen Molekülbereichen in dieser Transformation toleriert. Der mechanistische Verlauf der Reaktion wurde bislang sehr kontrovers diskutiert, auch wenn vor kurzem Hinweise gefunden wurden, dass ein Ein-Elektronen-Transfer die Umsetzung einleitet. Hier kann aus einer kombinierten Studie in Form von systematischen Syntheseversuchen, elektrochemischen Messungen, EPR-Spektroskopie, DFT-Rechnungen und Massenspektrometrie eine hochkonsistente mechanistische Vorstellung abgeleitet werden. MoCl5 fungiert als Ein-Elektronen-Oxidationsmittel in der Abwesenheit von TiCl4 und als Zwei-Elektronen-Oxidationsmittel in Gegenwart von TiCl4. In beiden Fällen führt es zu einem überoxidierten Intermediat, das die Zielstruktur vor Nebenreaktionen schützt. Im Zuge der wässrigen Aufarbeitung wirkt der Reagensabfall (MoIII/IV-Verbindungen) als Reduktionsmittel und liefert das gewünschte organische C-C-Kupplungsprodukt.

Co-reporter:Christoph Schnegelsberg;Sebastian Bachmann;Marlene Kolter;Thomas Auth;Dr. Michael John;Dr. Dietmar Stalke;Dr. Konrad Koszinowski
Chemistry - A European Journal 2016 Volume 22( Issue 23) pp:
Publication Date(Web):
DOI:10.1002/chem.201682362
Co-reporter:Dr. Aliaksei Putau;Dr. Harald Br ;Dr. Konrad Koszinowski
Chemistry - A European Journal 2016 Volume 22( Issue 36) pp:12868-12876
Publication Date(Web):
DOI:10.1002/chem.201602451

Abstract

Conjugate additions of organocuprates are of outstanding importance for organic synthesis. To improve our mechanistic understanding of these reactions, we have used electrospray ionization mass spectrometry for the identification of the ionic intermediates formed upon the treatment of LiCuR2LiCN (R=Me, Bu, Ph) with a series of α,β-unsaturated nitriles. Acrylonitrile, the weakest Michael acceptor included, did not afford any detectable intermediates. Fumaronitrile (FN) yielded adducts of the type Lin−1CunR2n(FN)n, n=1–3. When subjected to fragmentation in the gas phase, these adducts were not converted into the conjugate addition products, but re-dissociated into the reactants. In contrast, the reaction with 1,1-dicyanoethylene furnished the products of the conjugate addition without any observable intermediates. Tri- and tetracyanoethylene proved to be quite reactive as well. The presence of several cyano groups in these substrates opened up reaction pathways different from simple conjugate additions, however, and led to dimerization and substitution reactions. Moreover, the gas-phase fragmentation behavior of the species formed from these substrates indicated the occurrence of single-electron transfer processes. Additional quantum-chemical calculations provided insight into the structures and stabilities of the observed intermediates and their consecutive reactions.

Co-reporter:Katharina Böck;Dr. Julia E. Feil; Konstantin Karaghiosoff; Konrad Koszinowski
Chemistry - A European Journal 2015 Volume 21( Issue 14) pp:5548-5560
Publication Date(Web):
DOI:10.1002/chem.201406408

Abstract

Pd-mediated Negishi cross-coupling reactions were studied by a combination of kinetic measurements, electrospray-ionization (ESI) mass spectrometry, 31P NMR and UV/Vis spectroscopy. The kinetic measurements point to a rate-determining oxidative addition. Surprisingly, this step seems to involve not only the Pd catalyst and the aryl halide substrate, but also the organozinc reagent. In this context, the ESI-mass spectrometric observation of heterobimetallic Pd–Zn complexes [L2PdZnR]+ (L=S-PHOS, R=Bu, Ph, Bn) is particularly revealing. The inferred presence of these and related neutral complexes with a direct Pd–Zn interaction in solution explains how the organozinc reagent can modulate the reactivity of the Pd catalyst. Previous theoretical calculations by González-Pérez et al. (Organometallics­ 2012, 31, 2053) suggest that the complexation by the organozinc reagent lowers the activity of the Pd catalyst. Presumably, a similar effect also causes the rate decrease observed upon addition of ZnBr2. In contrast, added LiBr apparently counteracts the formation of Pd–Zn complexes and restores the high activity of the Pd catalyst. At longer reaction times, deactivation processes due to degradation of the S-PHOS ligand and aggregation of the Pd catalyst come into play, thus further contributing to the appreciable complexity of the title reaction.

Co-reporter:Konrad Koszinowski, Friederike Lissy
International Journal of Mass Spectrometry 2013 Volumes 354–355() pp:219-228
Publication Date(Web):15 November 2013
DOI:10.1016/j.ijms.2013.06.023
•Observation of significant ion-pairing effects in ESI.•ESI from protic and aprotic solvents.•Variation of analyte, counter-ion, solvent, and concentration.Despite the wide use of electrospray ionization (ESI) mass spectrometry, the factors determining the relative signal intensities of different analytes are not yet fully understood. We have performed a systematic study to assess the influence of selected counter-ions (Br−, ClO4−, BF4−, BPh4−) on the ESI response of alkali-metal (Li+, Cs+) and quaternary ammonium ions (NEt4+, NBu4+) over a concentration range of 0.025–2.5 mmol L−1. Specifically, we have subjected solutions containing equimolar mixtures of these analytes in H2O, CH3OH, CH3CN, and tetrahydrofuran, respectively, to ESI and determined the relative signal intensities of the ions thus produced. Especially in the aprotic solvents, variation of the counter-ion can significantly change the outcome of the ESI process, which we ascribe to ion pairing. The smaller counter-ions Br−, ClO4−, and BF4− undergo more selective ion pairing in that their tendencies to pair up with the cations strongly decrease in the order Li+ > Cs+ > NEt4+ > NBu4+. In contrast, ion pairing of the larger BPh4− counter-ion with the different cations is much less selective. As a result, the smaller counter-ions Br−, ClO4−, and BF4− suppress the ESI response of Li+ and Cs+ ions significantly more strongly than does BPh4−. Additional evidence for selective ion pairing comes from the observation of ionic aggregates enriched in the alkali-metal ions relative to the quaternary ammonium ions.
Co-reporter:Dr. Aliaksei Putau;B.Sc. Mona Wilken ; Konrad Koszinowski
Chemistry - A European Journal 2013 Volume 19( Issue 33) pp:10992-10999
Publication Date(Web):
DOI:10.1002/chem.201300804

Abstract

We have used a combination of electrospray ionization mass spectrometry and electrical conductivity measurements to analyze solutions of the Gilman cuprates LiCuR2⋅LiX, with R=Ph, Bu and X=Cl, Br, I, in tetrahydrofuran and have compared our findings with previous results on cyanocuprates LiCuR2⋅LiCN. Among the various polynuclear organocuprate ions observed, Li2Cu3Ph6, LiCu4Ph6, and Cu5Ph6 are of particular interest because aggregates of the same composition are known from X-ray crystal structures. Control experiments have indicated that the polynuclear organocuprate anions detected in solution are indeed identical to those formed in the solid state. As abundant ions of the type Li2Cu3R6 are found in solutions of Gilman cuprates and cyanocuprates alike, their possible involvement in organocuprate reactions should be considered. For comparison, we have also included solutions of LiCu(R)I, LiCuX2⋅LiX, LiCuX2, and CuCN⋅2 LiX in the present study.

Co-reporter:Konrad Koszinowski, Christina Müller, Harald Brand, and Julia E. Fleckenstein
Organometallics 2012 Volume 31(Issue 20) pp:7165-7170
Publication Date(Web):October 2, 2012
DOI:10.1021/om300698b
Gas-phase experiments on deuterium-labeled BuZn(TMEDA)+ (TMEDA = N,N,N′,N′-tetramethylethylenediamine) prove that the loss of butene from this species corresponds to a β-H elimination. Quantum-chemical calculations corroborate this finding and furthermore predict that the fragmentations of related cationic butylzinc complexes as well as of Bu3Zn– follow similar mechanisms.
Co-reporter:Etienne V. Brouillet, Alan R. Kennedy, Konrad Koszinowski, Ross McLellan, Robert E. Mulvey and Stuart D. Robertson
Dalton Transactions 2016 - vol. 45(Issue 13) pp:NaN5597-5597
Publication Date(Web):2016/02/22
DOI:10.1039/C6DT00531D
The cationic magnesium moiety of magnesium organohaloaluminate complexes, relevant to rechargeable Mg battery electrolytes, typically takes the thermodynamically favourable dinuclear [Mg2Cl3]+ form in the solid-state. We now report that judicious choice of Lewis donor allows the deliberate synthesis and isolation of the hitherto only postulated mononuclear [MgCl]+ and trinuclear [Mg3Cl5]+ modifications, forming a comparable series with a common aluminate anion [(Dipp)(Me3Si)NAlCl3]−. By pre-forming the Al–N bond prior to introduction of the Mg source, a consistently reproducible protocol is reported. Usage of the green solvent 2-methyltetrahydrofuran in place of THF in the context of Mg/Al battery electrolyte type complexes is also promoted.
9H-Purine-9-acetic acid, 6-[[(phenylmethoxy)carbonyl]amino]-
Pyridine, ethynyl-
Triostin A (8CI,9CI)
ACETONITRILE
Magnesium, chlorodecyl-