Jerry Troutman

Find an error

Name:
Organization: University of North Carolina at Charlotte
Department: Department of Chemistry
Title:
Co-reporter:Sunita Sharma, Katelyn M. Erickson, and Jerry M. Troutman
ACS Chemical Biology 2017 Volume 12(Issue 1) pp:
Publication Date(Web):November 17, 2016
DOI:10.1021/acschembio.6b00931
Capsular polysaccharide A (CPSA) is a four-sugar repeating unit polymer found on the surface of the gut symbiont Bacteroides fragilis that has therapeutic potential in animal models of autoimmune disorders. This therapeutic potential has been credited to its zwitterionic character derived from a positively charged N-acetyl-4-aminogalactosamine (AADGal) and a negatively charged 4,6-O-pyruvylated galactose (PyrGal). In this report, using a fluorescent polyisoprenoid chemical probe, the complete enzymatic assembly of the CPSA tetrasaccharide repeat unit is achieved. The proposed pyruvyltransferase, WcfO; galactopyranose mutase, WcfM; and glycosyltransferases, WcfP and WcfN, encoded by the CPSA biosynthesis gene cluster were heterologously expressed and functionally characterized. Pyruvate modification, catalyzed by WcfO, was found to occur on galactose of the polyisoprenoid-linked disaccharide (AADGal-Gal), and did not occur on galactose linked to uridine diphosphate (UDP) or a set of nitrophenyl-galactose analogues. This pyruvate modification was also found to be required for the incorporation of the next sugar in the pathway N-acetylgalactosamine (GalNAc) by the glycosyltransferase WcfP. The pyruvate acetal modification of a galactose has not been previously explored in the context of a polysaccharide biosynthesis pathway, and this work demonstrates the importance of this modification to repeat unit assembly. Upon production of the polyisoprenoid-linked AADGal-PyrGal-GalNAc, the proteins WcfM and WcfN were found to work in concert to form the final tetrasaccharide, where WcfM formed UDP-galactofuranose (Galf) and WcfN transfers Galf to the AADGal-PyrGal-GalNAc. This work demonstrates the first enzymatic assembly of the tetrasaccharide repeat unit of CPSA in a sequential single pot reaction.
Co-reporter:Jerry M. Troutman, Katelyn M. Erickson, Phillip M. Scott, Joseph M. Hazel, Christina D. Martinez, and Samantha Dodbele
Biochemistry 2015 Volume 54(Issue 18) pp:2817-2827
Publication Date(Web):April 21, 2015
DOI:10.1021/acs.biochem.5b00310
Bactoprenyl diphosphate (BPP), a two-E eight-Z configuration C55 isoprenoid, serves as a critical anchor for the biosynthesis of complex glycans central to bacterial survival and pathogenesis. BPP is formed by the polymerase undecaprenyl pyrophosphate synthase (UppS), which catalyzes the elongation of a single farnesyl diphosphate (FPP) with eight Z-configuration isoprene units from eight isopentenyl diphosphates. In vitro analysis of UppS and other polyprenyl diphosphate synthases requires the addition of a surfactant such as Triton X-100 to stimulate the release of the hydrophobic product from the enzyme for effective and efficient turnover. Here using a fluorescent 2-nitrileanilinogeranyl diphosphate analogue of FPP, we have found that a wide range of surfactants can stimulate release of product from UppS and that the structure of the surfactant has a major impact on the lengths of products produced by the protein. Of particular importance, shorter chain surfactants promote the release of isoprenoids with four to six Z-configuration isoprene additions, while larger chain surfactants promote the formation of natural isoprenoid lengths (8Z) and larger. We have found that the product chain lengths can be readily controlled and coarsely tuned by adjusting surfactant identity, concentration, and reaction time. We have also found that binary mixtures of just two surfactants can be used to fine-tune isoprenoid lengths. The surfactant effects discovered do not appear to be significantly altered with an alternative isoprenoid substrate. However, the surfactant effects do appear to be dependent on differences in UppS between bacterial species. This work provides new insights into surfactant effects in enzymology and highlights how these effects can be leveraged for the chemoenzymatic synthesis of otherwise difficult to obtain glycan biosynthesis probes. This work also provides key reagents for the systematic analysis of structure–activity relationships between glycan biosynthesis enzymes and isoprenoid structure.
Co-reporter:Samantha Dodbele, Christina D. Martinez, and Jerry M. Troutman
Biochemistry 2014 Volume 53(Issue 30) pp:5042-5050
Publication Date(Web):July 14, 2014
DOI:10.1021/bi500545g
Undecaprenyl pyrophosphate synthase (UPPS) is a critical enzyme required for the biosynthesis of polysaccharides essential for bacterial survival. In this report, we have tested the substrate selectivity of UPPS derived from the mammalian symbiont Bacteroides fragilis, the human pathogen Vibrio vulnificus, and the typically benign but opportunistic pathogen Escherichia coli. An anthranilamide-containing substrate, 2-amideanilinogeranyl diphosphate (2AA-GPP), was an effective substrate for only the B. fragilis UPPS protein, yet replacing the amide with a nitrile [2-nitrileanilinogeranyl diphosphate (2CNA-GPP)] led to a compound that was fully functional for UPPS from all three target organisms. These fluorescent substrate analogues were also found to undergo increases in fluorescence upon isoprenoid chain elongation, and this increase in fluorescence can be utilized to monitor the activity and inhibition of UPPS in 96-well plate assays. The fluorescence of 2CNA-GPP increased by a factor of 2.5-fold upon chain elongation, while that of 2AA-GPP increased only 1.2-fold. The 2CNA-GPP compound was therefore more versatile for screening the activity of UPPS from multiple species of bacteria and underwent a larger increase in fluorescence that improved its ability to detect increases in chain length. Overall, this work describes the development of new assay methods for UPPS and demonstrates the difference in substrate utilization between forms of UPPS from different species, which has major implications for UPPS inhibitor development, assay construction, and the development of polysaccharide biosynthesis probes.
Co-reporter:Jerry M. Troutman, Sunita Sharma, Katelyn M. Erickson, Christina D. Martinez
Carbohydrate Research 2014 Volume 395() pp:19-28
Publication Date(Web):18 August 2014
DOI:10.1016/j.carres.2014.06.003
•Recombinant expression of glycosyltransferases involved in Capsular Polysaccharide A biosynthesis.•Function identification of two encoded glycosyltransferases with purified substrate.•Specificity of WcfQ and WcfP glycosyltransferases.•Single pot biosynthesis of a bactoprenyl diphosphate linked disaccharide with WcfQ.•Turnover optimization of WcfQ and WcfP.Capsular Polysaccharide A (CPSA), a polymer of a four-sugar repeating unit that coats the surface of the mammalian symbiont Bacteroides fragilis, has therapeutic potential in animal models of Multiple Sclerosis and other autoinflammatory diseases. Genetic studies have demonstrated that CPSA biosynthesis is dependent primarily on a single gene cluster within the B. fragilis genome. However, the precise functions of the individual glycosyltransferases encoded by this cluster have not been identified. In this report each of these glycosyltransferases (WcfQ, WcfP, and WcfN) have been expressed and tested for their function in vitro. Using a reverse phase high performance liquid chromatography (HPLC) assay, WcfQ and WcfP were found to transfer galactose from uridine diphosphate (UDP)-linked galactose (Gal) to N-acetyl-4-amino-6-deoxy-galactosamine (AADGal) linked to a fluorescent mimic of bactoprenyl diphosphate, the native isoprenoid anchor for bacterial polysaccharide biosynthesis. The incorporation of galactose to form a bactoprenyl-linked disaccharide was confirmed by radiolabel incorporation and mass spectrometry (MS) of purified product. Using varying concentrations of UDP-Gal and enzyme, WcfQ was found to be the most effective protein at transferring galactose, and is the most likely candidate for in vivo incorporation of the sugar. WcfQ also cooperated in the presence of three preceding biosynthetic enzymes to form an isoprenoid-linked disaccharide in a single-pot reaction. This work represents a critical step in understanding the biosynthetic pathway responsible for the formation of CPSA, an unusual and potentially therapeutic biopolymer.
Co-reporter:Anahita Z. Mostafavi, Donovan K. Lujan, Katelyn M. Erickson, Christina D. Martinez, Jerry M. Troutman
Bioorganic & Medicinal Chemistry 2013 Volume 21(Issue 17) pp:5428-5435
Publication Date(Web):1 September 2013
DOI:10.1016/j.bmc.2013.06.007
Undecaprenyl Pyrophosphate Synthase (UPPS) is an enzyme critical to the production of complex polysaccharides in bacteria, as it produces the crucial bactoprenol scaffold on which these materials are assembled. Methods to characterize the systems associated with polysaccharide production are non-trivial, in part due to the lack of chemical tools to investigate their assembly. In this report, we develop a new fluorescent tool using UPPS to incorporate a powerful fluorescent anthranilamide moiety into bactoprenol. The activity of this analogue in polysaccharide biosynthesis is then tested with the initiating hexose-1-phosphate transferases involved in Capsular Polysaccharide A biosynthesis in the symbiont Bacteroides fragilis and the asparagine-linked glycosylation system of the pathogenic Campylobacter jejuni. In addition, it is shown that the UPPS used to make this probe is not specific for E-configured isoprenoid substrates and that elongation by UPPS is required for activity with the downstream enzymes.
Co-reporter:Anahita Z. Mostafavi and Jerry M. Troutman
Biochemistry 2013 Volume 52(Issue 11) pp:
Publication Date(Web):March 4, 2013
DOI:10.1021/bi400126w
The sugar capsule capsular polysaccharide A (CPSA), which coats the surface of the mammalian symbiont Bacteroides fragilis, is a key mediator of mammalian immune system development. In addition, this sugar polymer has shown therapeutic potential in animal models of multiple sclerosis and other autoimmune disorders. The structure of the CPSA polymer includes a rare stereoconfiguration sugar acetamido-4-amino-6-deoxygalactopyranose (AADGal) that we propose is the first sugar linked to a bactoprenyl diphosphate scaffold in the production of CPSA. In this report, we have utilized a heterologous system to reconstitute bactoprenyl diphosphate-linked AADGal production. Construction of this system included a previously reported Campylobacter jejuni dehydratase, PglF, coupled to a B. fragilis-encoded aminotransferase (WcfR) and initiating hexose-1-phosphate transferase (WcfS). The function of the aminotransferase was confirmed by capillary electrophoresis and a novel high-performance liquid chromatography (HPLC) method. Production of the rare uridine diphosphate (UDP)-AADGal was confirmed through a series of one- and two-dimensional nuclear magnetic resonance experiments and high-resolution mass spectrometry. A spectroscopically unique analogue of bactoprenyl phosphate was utilized to characterize the transfer reaction catalyzed by WcfS and allowed HPLC-based isolation of the isoprenoid-linked sugar product. Importantly, the entire heterologous system was utilized in a single-pot reaction to biosynthesize the bactoprenyl-linked sugar. This work provides the first critical step in the in vitro reconstitution of CPSA biosynthesis.
Co-reporter:Donovan K. Lujan, Jennifer A. Stanziale, Anahita Z. Mostafavi, Sunita Sharma, Jerry M. Troutman
Carbohydrate Research 2012 Volume 359() pp:44-53
Publication Date(Web):1 October 2012
DOI:10.1016/j.carres.2012.06.014
Undecaprenyl Pyrophosphate Synthase (UPPS) is a key enzyme that catalyzes the production of bactoprenols, which act as membrane anchors for the assembly of complex bacterial oligosaccharides. One of the major hurdles in understanding the assembly of oligosaccharide assembly is a lack of chemical tools to study this process, since bactoprenols and the resulting isoprenoid-linked oligosaccharides lack handles or chromophores for use in pathway analysis. Here we describe the isolation of a new UPPS from the symbiotic microorganism Bacteroides fragilis, a key species in the human microbiome. The protein was purified to homogeneity and utilized to accept a chromophore containing farnesyl diphosphate analogue as a substrate. The analogue was utilized by the enzyme and resulted in a bactoprenyl diphosphate product with an easy to monitor tag associated with it. Furthermore, the diphosphate is shown to be readily converted to monophosphate using a common molecular biology reagent. This monophosphate product allowed for the investigation of complex oligosaccharide biosynthesis, and was used to probe the activity of glycosyltransferases involved in the well characterized Campylobacter jejuni N-linked protein glycosylation. Novel reagents similar to this will provide key tools for the study of uncharacterized oligosaccharide assemblies, and open the possibility for the development of rapid screening methodology for these biosynthetic systems.Graphical abstractHighlights► B. fragilis Undecaprenyl Pyrophosphate Synthase (UPPS) isolation. ► Bactoprenyl diphosphate analogue preparation with UPPS. ► Bactoprenyl monophosphate analogue preparation with alkaline phosphatase. ► Monitoring a UPPS reaction by HPLC. ► Analysis of C. jejuni oligosaccharide assembly steps by TLC and HPLC.
(2r,3r,4s,5s,6r)-2-[(2r,3s,4r,5r,6r)-6-hexoxy-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol
2,6-Octadienal, 8-(acetyloxy)-2,6-dimethyl-, (6E)-
尾-D-Glucopyranoside, decyl 4-O-伪-D-glucopyranosyl-
D-GALACTOSE, 2-(ACETYLAMINO)-4-AMINO-2,4,6-TRIDEOXY-
(2R,3S,4S,5R,6R)-2-(Hydroxymethyl)-6-(nonyloxy)tetrahydro-2H-pyran-3,4,5-triol
Galactose
Uridine 5'-(trihydrogendiphosphate), P'-a-D-galactopyranosylester
Isopentenyl pyrophosphate