Martin T. Zanni

Find an error

Name: Zanni, Martin
Organization: University of Wisconsin—Madison , USA
Department: Department of Chemistry
Title: Professor(PhD)

TOPICS

Co-reporter:Justin P. Lomont, Joshua S. Ostrander, Jia-Jung Ho, Megan K. Petti, and Martin T. Zanni
The Journal of Physical Chemistry B September 28, 2017 Volume 121(Issue 38) pp:8935-8935
Publication Date(Web):August 29, 2017
DOI:10.1021/acs.jpcb.7b06826
We report the transition dipole strengths and frequencies of the amyloid β-sheet amide I mode for the aggregated proteins amyloid-β1–40, calcitonin, α-synuclein, and glucagon. According to standard vibrational coupling models for proteins, the frequencies of canonical β-sheets are set by their size and structural and environmental disorder, which determines the delocalization length of the vibrational excitons. The larger the delocalization the lower the frequency of the main infrared-allowed transition, A⊥. The models also predict an accompanying increase in transition dipole strength. For the proteins measured here, we find no correlation between transition dipole strengths and amyloid β-sheet transition frequency. To understand this observation, we have extracted from the protein data bank crystal structures of amyloid peptides from which we calculate the amide I vibrational couplings, and we use these in a model β-sheet Hamiltonian to simulate amyloid vibrational spectra. We find that the variations in amyloid β-sheet structures (e.g., dihedral angles, interstrand distances, and orientations) create significant differences in the average values for interstrand and nearest neighbor couplings, and that those variations encompass the variation in measured A⊥ frequencies. We also find that off-diagonal disorder about the average values explains the range of transition dipole strengths observed experimentally. Thus, we conclude that the lack of correlation between transition dipole-strength and frequency is caused by variations in amyloid β-sheet structure. Taken together, these results indicate that the amide I frequency is very sensitive to amyloid β-sheet structure, the β-sheets of these 4 proteins are not identical, and the assumption that frequency of amyloids scales with β-sheet size cannot be adopted without an accompanying measurement of transition dipole strengths.
Co-reporter:Huong T. Kratochvil, Michał Maj, Kimberly Matulef, Alvin W. Annen, Jared Ostmeyer, Eduardo Perozo, Benoît Roux, Francis I. Valiyaveetil, and Martin T. Zanni
Journal of the American Chemical Society July 5, 2017 Volume 139(Issue 26) pp:8837-8837
Publication Date(Web):May 5, 2017
DOI:10.1021/jacs.7b01594
The interplay between the intracellular gate and the selectivity filter underlies the structural basis for gating in potassium ion channels. Using a combination of protein semisynthesis, two-dimensional infrared (2D IR) spectroscopy, and molecular dynamics (MD) simulations, we probe the ion occupancy at the S1 binding site in the constricted state of the selectivity filter of the KcsA channel when the intracellular gate is open and closed. The 2D IR spectra resolve two features, whose relative intensities depend on the state of the intracellular gate. By matching the experiment to calculated 2D IR spectra of structures predicted by MD simulations, we identify the two features as corresponding to states with S1 occupied or unoccupied by K+. We learn that S1 is >70% occupied when the intracellular gate is closed and <15% occupied when the gate is open. Comparison of MD trajectories show that opening of the intracellular gate causes a structural change in the selectivity filter, which leads to a change in the ion occupancy. This work reveals the complexity of the conformational landscape of the K+ channel selectivity filter and its dependence on the state of the intracellular gate.
Co-reporter:Ayanjeet Ghosh, Joshua S. Ostrander, and Martin T. Zanni
Chemical Reviews August 23, 2017 Volume 117(Issue 16) pp:10726-10726
Publication Date(Web):January 6, 2017
DOI:10.1021/acs.chemrev.6b00582
Proteins exhibit structural fluctuations over decades of time scales. From the picosecond side chain motions to aggregates that form over the course of minutes, characterizing protein structure over these vast lengths of time is important to understanding their function. In the past 15 years, two-dimensional infrared spectroscopy (2D IR) has been established as a versatile tool that can uniquely probe proteins structures on many time scales. In this review, we present some of the basic principles behind 2D IR and show how they have, and can, impact the field of protein biophysics. We highlight experiments in which 2D IR spectroscopy has provided structural and dynamical data that would be difficult to obtain with more standard structural biology techniques. We also highlight technological developments in 2D IR that continue to expand the scope of scientific problems that can be accessed in the biomedical sciences.
Co-reporter:Thomas J. McDonough;Lushuai Zhang;Susmit Singha Roy;Nicholas M. Kearns;Michael S. Arnold;Trisha L. Andrew
Physical Chemistry Chemical Physics 2017 vol. 19(Issue 6) pp:4809-4820
Publication Date(Web):2017/02/08
DOI:10.1039/C6CP06454J
We compare the ultrafast dynamics of singlet fission and charge generation in pentacene films grown on glass and graphene. Pentacene grown on graphene is interesting because it forms large crystals with the long axis of the molecules “lying-down” (parallel to the surface). At low excitation fluence, spectra for pentacene on graphene contain triplet absorptions at 507 and 545 nm and no bleaching at 630 nm, which we show is due to the orientation of the pentacene molecules. We perform the first transient absorption anisotropy measurements on pentacene, observing negative anisotropy of the 507 and 545 nm peaks, consistent with triplet absorption. A broad feature at 853 nm, observed on both glass and graphene, is isotropic, suggesting hole absorption. At high fluence, there are additional features, whose kinetics and anisotropies are not explained by heating, that we assign to charge generation; we propose a polaron pair absorption at 614 nm. The lifetimes are shorter at high fluence for both pentacene on glass and graphene, indicative of triplet–triplet annihilation that likely enhances charge generation. The anisotropy decays more slowly for pentacene on graphene than on glass, in keeping with the smaller domain size observed via atomic force microscopy. Coherent acoustic phonons are observed for pentacene on graphene, which is a consequence of more homogeneous domains. Measuring the ultrafast dynamics of pentacene as a function of molecular orientation, fluence, and polarization provides new insight to previous spectral assignments.
Co-reporter:Tianqi O. Zhang, Ariel M. Alperstein, Martin T. Zanni
Journal of Molecular Biology 2017 Volume 429, Issue 11(Volume 429, Issue 11) pp:
Publication Date(Web):2 June 2017
DOI:10.1016/j.jmb.2017.04.014
•UV exposure causes cataracts, a protein aggregation disease that occurs in lenses.•In vitro, the lens proteins form amyloid fibers as identified by TEM and 2D IR spectroscopy.•In the lens, UV irradiation causes amyloid structure to form as identified using signature peaks in 2D IR spectra.•Senile cataracts may be an amyloid disease.Cataracts are formed by the aggregation of crystallin proteins in the eye lens. Many in vitro studies have established that crystallin proteins precipitate into aggregates that contain amyloid fibers when denatured, but there is little evidence that ex vivo cataracts contain amyloid. In this study, we collect two-dimensional infrared (2D IR) spectra on tissue slices of porcine eye lenses. As shown in control experiments on in vitro αB- and γD-crystallin, 2D IR spectroscopy can identify the highly ordered β-sheets typical of amyloid secondary structure even if the fibers themselves are too short to be resolved with TEM. In ex vivo experiments of acid-treated tissues, characteristic 2D IR features are observed and fibers > 50 nm in length are resolved by transmission electron microscopy (TEM), consistent with amyloid fibers. In UV-irradiated lens tissues, fibers are not observed with TEM, but highly ordered β-sheets of amyloid secondary structure is identified from the 2D IR spectra. The characteristic 2D IR features of amyloid β-sheet secondary structure are created by as few as four or five strands and so identify amyloid secondary structure even if the aggregates themselves are too small to be resolved with TEM. We discuss these findings in the context of the chaperone system of the lens, which we hypothesize sequesters small aggregates, thereby preventing long fibers from forming. This study expands the scope of heterodyned 2D IR spectroscopy to tissues. The results provide a link between in vitro and ex vivo studies and support the hypothesis that cataracts are an amyloid disease.Download high-res image (251KB)Download full-size image
Co-reporter:Randy D. Mehlenbacher; Jialiang Wang; Nicholas M. Kearns; Matthew J. Shea; Jessica T. Flach; Thomas J. McDonough; Meng-Yin Wu; Michael S. Arnold
The Journal of Physical Chemistry Letters 2016 Volume 7(Issue 11) pp:2024-2031
Publication Date(Web):May 16, 2016
DOI:10.1021/acs.jpclett.6b00650
We observe ultrafast energy transfer between bare carbon nanotubes in a thin film using two-dimensional (2D) white-light spectroscopy. Using aqueous two-phase separation, semiconducting carbon nanotubes are purified from their metallic counterparts and condensed into a 10 nm thin film with no residual surfactant. Cross peak intensities put the time scale for energy transfer at <60 fs, and 2D anisotropy measurements determine that energy transfer is most efficient between parallel nanotubes, thus favoring directional energy flow. Lifetimes are about 300 fs. Thus, these results are in sharp contrast to thin films prepared from nanotubes that are wrapped by polymers, which exhibit picosecond energy transfer and randomize the direction of energy flow. Ultrafast energy flow and directionality are exciting properties for next-generation photovoltaics, photodetectors, and other devices.
Co-reporter:Randy D. Mehlenbacher
The Journal of Physical Chemistry C 2016 Volume 120(Issue 30) pp:17069-17080
Publication Date(Web):June 30, 2016
DOI:10.1021/acs.jpcc.6b04961
Polarized two-dimensional white-light (2D-WL) spectra are reported for thin films of semiconducting carbon nanotubes. The orientational responses for 4-point correlation functions are derived for samples that are isotropic in two dimensions. Spectra measured using ⟨−45°,+45°,0°,90°⟩ polarizations eliminate the diagonal peaks in the spectra arising from S1 transitions to uncover cross peaks to a weaker transition that is assigned to radial breathing modes. In nanotubes purified by unwrapping PFO-BPY polymer using metal chelation, an absorption at 1160 nm is observed that is assigned to hole doping that forms trions. The trion peak may have a transition dipole nonparallel to the S1 transitions, and so its cross peak is prominent in polarized 2D-WL spectra. Energy transfer of photoexcitons to the trion peak occurs within 1 ps. Identifying and understanding the effects of purification on the electronic structure of thin films of semiconducting carbon nanotubes is important for learning how the inherent photophysics of individual carbon nanotubes translates to coupled nanotube thin-film materials.
Co-reporter:Kimberly Matulef;Huong T. Kratochvil;Michał Maj;Joshua K. Carr;Hui Li;Alvin W. Annen;Jared Ostmeyer;Arnaldo L. Serrano;H. Raghuraman;Sean D. Moran;J. L. Skinner;Eduardo Perozo;Benoît Roux;Francis I. Valiyaveetil
Science 2016 Volume 353(Issue 6303) pp:1040-1044
Publication Date(Web):02 Sep 2016
DOI:10.1126/science.aag1447

Abstract

Potassium channels are responsible for the selective permeation of K+ ions across cell membranes. K+ ions permeate in single file through the selectivity filter, a narrow pore lined by backbone carbonyls that compose four K+ binding sites. Here, we report on the two-dimensional infrared (2D IR) spectra of a semisynthetic KcsA channel with site-specific heavy (13C18O) isotope labels in the selectivity filter. The ultrafast time resolution of 2D IR spectroscopy provides an instantaneous snapshot of the multi-ion configurations and structural distributions that occur spontaneously in the filter. Two elongated features are resolved, revealing the statistical weighting of two structural conformations. The spectra are reproduced by molecular dynamics simulations of structures with water separating two K+ ions in the binding sites, ruling out configurations with ions occupying adjacent sites.

Co-reporter:Martin T. Zanni
PNAS 2016 Volume 113 (Issue 18 ) pp:4890-4891
Publication Date(Web):2016-05-03
DOI:10.1073/pnas.1605263113
Co-reporter:Joshua S. Ostrander, Arnaldo L. Serrano, Ayanjeet Ghosh, and Martin T. Zanni
ACS Photonics 2016 Volume 3(Issue 7) pp:
Publication Date(Web):June 10, 2016
DOI:10.1021/acsphotonics.6b00297
We report the first wide-field microscope for measuring two-dimensional infrared (2D IR) spectroscopic images. We concurrently collect more than 16 000 2D IR spectra, made possible by a new focal plane array detector and mid-IR pulse shaping, to generate hyperspectral images with multiple frequency dimensions and diffraction-limited spatial resolution. Both frequency axes of the spectra are collected in the time domain by scanning two pairs of femtosecond pulses using a dual acousto-optic modulator pulse shaper. The technique is demonstrated by imaging a mixture of metal carbonyl absorbed polystyrene beads. The differences in image formation between FTIR and 2D IR microscopy are also explored by imaging a patterned USAF test target. We find that our 2D IR microscope has diffraction-limited spatial resolution and enhanced contrast compared to FTIR microscopy because of the nonlinear scaling of the 2D IR signal to the absorptivity coefficient for the vibrational modes. Images generated using off-diagonal peaks, created from vibrational anharmonicities, improve the molecular discrimination and eliminate noise. Two-dimensional wide-field IR microscopy provides information on vibrational lifetimes, molecular couplings, transition dipole orientations, and many other quantities that can be used for creating image contrast to help disentangle and interpret complex and heterogeneous samples. Such experiments made possible could include the study of amyloid proteins in tissues, protein folding in heterogeneous environments, and structural dynamics in devices employing mid-IR materials.
Co-reporter:Bei Ding; Afra Panahi; Jia-Jung Ho; Jennifer E. Laaser; Charles L. BrooksIII; Martin T. Zanni;Zhan Chen
Journal of the American Chemical Society 2015 Volume 137(Issue 32) pp:10190-10198
Publication Date(Web):August 4, 2015
DOI:10.1021/jacs.5b04024
Isotope labeling is a powerful technique to probe detailed structures of biological molecules with a variety of analytical methods such as NMR and vibrational spectroscopies. It is important to obtain molecular structural information on biological molecules at interfaces such as cell membranes, but it is challenging to use the isotope labeling method to study interfacial biomolecules. Here, by individually 13C═16O labeling ten residues of a peptide, Ovispirin-1, we have demonstrated for the first time that a site-specific environment of membrane associated peptide can be probed by the submonolayer surface sensitive sum frequency generation (SFG) vibrational spectroscopy in situ. With the peptide associated with a single lipid bilayer, the sinusoidal trend of the SFG line width and peak-center frequency suggests that the peptide is located at the interface beneath the lipid headgroup region. The constructive interferences between the isotope labeled peaks and the main peptide amide I peak contributed by the unlabeled components were used to determine the membrane orientation of the peptide. From the SFG spectral peak-center frequency, line width, and polarization dependence of the isotope labeled units, we deduced structural information on individual units of the peptide associated with a model cell membrane. We also performed molecular dynamics (MD) simulations to understand peptide–membrane interactions. The physical pictures described by simulation agree well with the SFG experimental result. This research demonstrates the feasibility and power of using isotope labeling SFG to probe molecular structures of interfacial biological molecules in situ in real time.
Co-reporter:Emily B. Dunkelberger, Maksim Grechko, and Martin T. Zanni
The Journal of Physical Chemistry B 2015 Volume 119(Issue 44) pp:14065-14075
Publication Date(Web):October 7, 2015
DOI:10.1021/acs.jpcb.5b07706
Transition dipoles are an underutilized quantity for probing molecular structures. The transition dipole strengths in an extended system like a protein are modulated by the couplings and thus probe the structures. Here we measure the absolute transition dipole strengths of human and rat amylin in their solution, aggregated, membrane, and micelleular bound forms, using a combination of 1D and 2D infrared spectroscopy. We find that the vibrational modes of amyloid fibers made of human amylin can extend across as many as 12 amino acids, reflecting very ordered β-sheets in the most carefully prepared samples. Rat amylin has FTIR spectra that are nearly identical in solution, micelles, and membranes. We show that the transition dipoles of rat amylin are much larger when bound to micelles and membranes than when in solution, consistent with rat amylin adopting an α-helical structure. We interpret the transition dipole strengths as experimental measurements of the inverse participation ratio often calculated in theoretical studies. The structure of aggregating and membrane-bound proteins can be difficult to identify with existing techniques, especially during kinetics. These results demonstrate how absolute transition dipoles measured via our 1D/2D spectroscopy method can provide important structural information.
Co-reporter:Jia-Jung Ho, David R. Skoff, Ayanjeet Ghosh, and Martin T. Zanni
The Journal of Physical Chemistry B 2015 Volume 119(Issue 33) pp:10586-10596
Publication Date(Web):July 29, 2015
DOI:10.1021/acs.jpcb.5b07078
DNA-covered materials are important in technological applications such as biosensors and microarrays, but obtaining structural information on surface-bound biomolecules is experimentally challenging. In this paper, we structurally characterize single-stranded DNA monolayers of poly(thymine) from 10 to 25 bases in length with an emerging surface technique called two-dimensional sum frequency generation (2D SFG) spectroscopy. These experiments are carried out by adding a mid-IR pulse shaper to a femtosecond broad-band SFG spectrometer. Cross peaks and 2D line shapes in the 2D SFG spectra provide information about structure and dynamics. Because the 2D SFG spectra are heterodyne detected, the monolayer spectra can be directly compared to 2D infrared (2D IR) spectra of poly(thymine) in solution, which aids interpretation. We simulate the 2D SFG spectra using DFT calculations and an excitonic Hamiltonian that relates the molecular geometry to the vibrational coupling. Intrabase cross peaks help define the orientation of the bases and interbase cross peaks, created by coupling between bases, and resolves features not observed in 1D SFG spectra that constrain the relative geometries of stacked bases. We present a structure for the poly(T) oligomer that is consistent with the 2D SFG data. These experiments provide insight into the DNA monolayer structure and set precedent for studying complex biomolecules on surfaces with 2D SFG spectroscopy.
Co-reporter:Sean D. Moran and Martin T. Zanni
The Journal of Physical Chemistry Letters 2014 Volume 5(Issue 11) pp:1984-1993
Publication Date(Web):May 16, 2014
DOI:10.1021/jz500794d
There is an enormous amount of interest in the structures and formation mechanisms of amyloid fibers. In this Perspective, we review the most common structural motifs of amyloid fibers and discuss how infrared spectroscopy and isotope labeling can be used to identify their structures and aggregation kinetics. We present three specific strategies, site-specific labeling to obtain residue-by-residue structural information, isotope dilution of uniformly labeled proteins for identifying structural folds and protein mixtures, and expressed protein ligation for studying the domain structures of large proteins. For each of these methods, vibrational couplings are the source of the identifying features in the infrared spectrum. Examples are provided using the proteins hIAPP, Aβ, polyglutamine, and γD-crystallin. We focus on FTIR spectroscopy but also describe new observables made possible by 2D IR spectroscopy.
Co-reporter:Lauren E. Buchanan;Joshua K. Carr;Aaron M. Fluitt;Andrew J. Hoganson;Sean D. Moran;Juan J. de Pablo;James L. Skinner
PNAS 2014 Volume 111 (Issue 16 ) pp:5796-5801
Publication Date(Web):2014-04-22
DOI:10.1073/pnas.1401587111
Polyglutamine (polyQ) sequences are found in a variety of proteins, and mutational expansion of the polyQ tract is associated with many neurodegenerative diseases. We study the amyloid fibril structure and aggregation kinetics of K2Q24K2W, a model polyQ sequence. Two structures have been proposed for amyloid fibrils formed by polyQ peptides. By forming fibrils composed of both 12C and 13C monomers, made possible by protein expression in Escherichia coli, we can restrict vibrational delocalization to measure 2D IR spectra of individual monomers within the fibrils. The spectra are consistent with a β-turn structure in which each monomer forms an antiparallel hairpin and donates two strands to a single β-sheet. Calculated spectra from atomistic molecular-dynamics simulations of the two proposed structures confirm the assignment. No spectroscopically distinct intermediates are observed in rapid-scan 2D IR kinetics measurements, suggesting that aggregation is highly cooperative. Although 2D IR spectroscopy has advantages over linear techniques, the isotope-mixing strategy will also be useful with standard Fourier transform IR spectroscopy.
Co-reporter:Ivan Peran, Tracey Oudenhoven, Ann Marie Woys, Matthew D. Watson, Tianqi O. Zhang, Isaac Carrico, Martin T. Zanni, and Daniel P. Raleigh
The Journal of Physical Chemistry B 2014 Volume 118(Issue 28) pp:7946-7953
Publication Date(Web):April 21, 2014
DOI:10.1021/jp5008279
A high-sensitivity metal-carbonyl-based IR probe is described that can be incorporated into proteins or other biomolecules in very high yield via Click chemistry. A two-step strategy is demonstrated. First, a methionine auxotroph is used to incorporate the unnatural amino acid azidohomoalanine at high levels. Second, a tricarbonyl (η5-cyclopentadienyl) rhenium(I) probe modified with an alkynyl linkage is coupled via the Click reaction. We demonstrate these steps using the C-terminal domain of the ribosomal protein L9 as a model system. An overall incorporation level of 92% was obtained at residue 109, which is a surface-exposed residue. Incorporation of the probe into a surface site is shown not to perturb the stability or structure of the target protein. Metal carbonyls are known to be sensitive to solvation and protein electrostatics through vibrational lifetimes and frequency shifts. We report that the frequencies and lifetimes of this probe also depend on the isotopic composition of the solvent. Comparison of the lifetimes measured in H2O versus D2O provides a probe of solvent accessibility. The metal carbonyl probe reported here provides an easy and robust method to label very large proteins with an amino-acid-specific tag that is both environmentally sensitive and a very strong absorber.
Co-reporter:Maksim Grechko, Yumin Ye, Randy D. Mehlenbacher, Thomas J. McDonough, Meng-Yin Wu, Robert M. Jacobberger, Michael S. Arnold, and Martin T. Zanni
ACS Nano 2014 Volume 8(Issue 6) pp:5383
Publication Date(Web):May 7, 2014
DOI:10.1021/nn4041798
We utilize femtosecond transient absorption spectroscopy to study dynamics of photoexcitation migration in films of semiconducting single-wall carbon nanotubes. Films of nanotubes in close contact enable energy migration such as needed in photovoltaic and electroluminescent devices. Two types of films composed of nanotube fibers are utilized in this study: densely packed and very porous. By comparing exciton kinetics in these films, we characterize excitation transfer between carbon nanotubes inside fibers versus between fibers. We find that intrafiber transfer takes place in both types of films, whereas interfiber transfer is greatly suppressed in the porous one. Using films with different nanotube composition, we are able to test several models of exciton transfer. The data are inconsistent with models that rely on through-space interfiber energy transfer. A model that fits the experimental results postulates that interfiber transfer occurs only at intersections between fibers, and the excitons reach the intersections by diffusing along the long-axis of the tubes. We find that time constants for the inter- and intrafiber transfers are 0.2–0.4 and 7 ps, respectively. In total, hopping between fibers accounts for about 60% of all exciton downhill transfer prior to 4 ps in the dense film. The results are discussed with regards to transmission electron micrographs of the films. This study provides a rigorous analysis of the photophysics in this new class of promising materials for photovoltaics and other technologies.Keywords: carbon nanotube; diffusion; electronic energy transfer; exciton; photovoltaic; transient absorption
Co-reporter:Jennifer E. Laaser ; Jeffrey R. Christianson ; Tracey A. Oudenhoven ; Yongho Joo ; Padma Gopalan ; J. R. Schmidt
The Journal of Physical Chemistry C 2014 Volume 118(Issue 11) pp:5854-5861
Publication Date(Web):February 26, 2014
DOI:10.1021/jp412402v
In this Article, we investigate the effects of binding geometry and intermolecular interactions in monolayers of a rhenium-based dye adsorbed to TiO2. We combine two-dimensional infrared (2D IR) spectroscopy of samples prepared with different dye loadings with density functional theory (DFT) calculations of dye binding energies and vibrational frequencies. Our 2D IR spectra reveal splitting of the CO symmetric stretch mode into two peaks of unequal intensity at high surface coverages, which persists even when samples are washed to remove unadsorbed aggregates. Our DFT calculations indicate that it is unlikely that dye binding geometries account for the shifts in peak frequency observed in our experimental spectra. Instead, we find that the shifts in vibrational frequency and 2D IR peak structure are consistent with coupling of dyes associated on the TiO2 surface. The relative peak intensities in our 1D and 2D spectra indicate different transition dipole strengths, also a signature of molecular coupling. We show that aggregation of dyes on the surface is energetically favorable. Adsorbate–adsorbate interactions may play an important role in defining surface structure and electronic properties of dye-sensitized solar cells and related organic/inorganic interfaces. Infared spectroscopy is a good means to identify its occurrence, and to begin exploring its effects on phenomena like electron injection kinetics.
Co-reporter:Randy D. Mehlenbacher, Meng-Yin Wu, Maksim Grechko, Jennifer E. Laaser, Michael S. Arnold, and Martin T. Zanni
Nano Letters 2013 Volume 13(Issue 4) pp:1495-1501
Publication Date(Web):March 6, 2013
DOI:10.1021/nl304591w
Carbon nanotubes are a promising means of capturing photons for use in solar cell devices. We time-resolved the photoexcitation dynamics of coupled, bandgap-selected, semiconducting carbon nanotubes in thin films tailored for photovoltaics. Using transient absorption spectroscopy and anisotropy measurements, we found that the photoexcitation evolves by two mechanisms with a fast and long-range component followed by a slow and short-range component. Within 300 fs of optical excitation, 20% of nanotubes transfer their photoexcitation over 5–10 nm into nearby nanotube fibers. After 3 ps, 70% of the photoexcitation resides on the smallest bandgap nanotubes. After this ultrafast process, the photoexcitation continues to transfer on a ∼10 ps time scale but to predominantly aligned tubes. Ultimately the photoexcitation hops twice on average between fibers. These results are important for understanding the flow of energy and charge in coupled nanotube materials and light-harvesting devices.
Co-reporter:Jennifer E. Laaser ; David R. Skoff ; Jia-Jung Ho ; Yongho Joo ; Arnaldo L. Serrano ; Jay D. Steinkruger ; Padma Gopalan ; Samuel H. Gellman
Journal of the American Chemical Society 2013 Volume 136(Issue 3) pp:956-962
Publication Date(Web):December 29, 2013
DOI:10.1021/ja408682s
Surface-bound polypeptides and proteins are increasingly used to functionalize inorganic interfaces such as electrodes, but their structural characterization is exceedingly difficult with standard technologies. In this paper, we report the first two-dimensional sum-frequency generation (2D SFG) spectra of a peptide monolayer, which are collected by adding a mid-IR pulse shaper to a standard femtosecond SFG spectrometer. On a gold surface, standard FTIR spectroscopy is inconclusive about the peptide structure because of solvation-induced frequency shifts, but the 2D line shapes, anharmonic shifts, and lifetimes obtained from 2D SFG reveal that the peptide is largely α-helical and upright. Random coil residues are also observed, which do not themselves appear in SFG spectra due to their isotropic structural distribution, but which still absorb infrared light and so can be detected by cross-peaks in 2D SFG spectra. We discuss these results in the context of peptide design. Because of the similar way in which the spectra are collected, these 2D SFG spectra can be directly compared to 2D IR spectra, thereby enabling structural interpretations of surface-bound peptides and biomolecules based on the well-studied structure/2D IR spectra relationships established from soluble proteins.
Co-reporter:Sean D. Moran, Tianqi O. Zhang, Sean M. Decatur, and Martin T. Zanni
Biochemistry 2013 Volume 52(Issue 36) pp:
Publication Date(Web):August 19, 2013
DOI:10.1021/bi4008353
γD-Crystallin is an abundant structural protein of the lens that is found in native and modified forms in cataractous aggregates. We establish that UV–B irradiation of γD-Crystallin leads to structurally specific modifications and precipitation via two mechanisms: amorphous aggregates and amyloid fibers. UV–B radiation causes cleavage of the backbone, in large measure near the interdomain interface, where side chain oxidations are also concentrated. 2D IR spectroscopy and expressed protein ligation localize fiber formation exclusively to the C-terminal domain of γD-Crystallin. The native β-sandwich domains are not retained upon precipitation by either mechanism. The similarities between the amyloid forming pathways when induced by either UV–B radiation or low pH suggest that the propensity for the C-terminal β-sandwich domain to form amyloid β-sheets determines the misfolding pathway independent of the mechanism of denaturation.
Co-reporter:David R. Skoff, Jennifer E. Laaser, Sudipta S. Mukherjee, Chris T. Middleton, Martin T. Zanni
Chemical Physics 2013 Volume 422() pp:8-15
Publication Date(Web):30 August 2013
DOI:10.1016/j.chemphys.2012.08.019

Abstract

Over the last decade two-dimensional infrared (2D IR) spectroscopy has proven to be a very useful extension of infrared spectroscopy, yet the technique remains restricted to a small group of specialized researchers because of its experimental complexity and high equipment cost. We report on a spectrometer that is compact, mechanically robust, and is much less expensive than previous designs because it uses a single pixel MCT detector rather than an array detector. Moreover, each axis of the spectrum can be collected in either the time or frequency domain via computer programming. We discuss pulse sequences for scanning the probe axis, which were not previously possible. We present spectra on metal carbonyl compounds at 5 μm and a model peptide at 6 μm. Data collection with a single pixel MCT takes longer than using an array detector, but publishable quality data are still achieved with only a few minutes of averaging.

Co-reporter:Jennifer E. Laaser and Martin T. Zanni
The Journal of Physical Chemistry A 2013 Volume 117(Issue 29) pp:5875-5890
Publication Date(Web):November 12, 2012
DOI:10.1021/jp307721y
We present ways in which pulse sequences and polarizations can be used to extract structural information from one- and two-dimensional vibrational sum frequency generation (2D SFG) spectra. We derive analytic expressions for the polarization dependence of systems containing coupled vibrational modes, and we present simulated spectra to identify the features of different molecular geometries. We discuss several useful polarization combinations for suppressing strong diagonal peaks and emphasizing weaker cross-peaks. We investigate unique capabilities of 2D SFG spectra for obtaining structural information about SFG-inactive modes and for identifying coupled achiral chromophores. This work builds on techniques that have been developed for extracting structural information from 2D IR spectra. This paper discusses how to utilize these concepts in 2D SFG experiments to probe multioscillator systems at interfaces. The sample code for calculating polarization dependence of 1D and 2D SFG spectra is provided in the Supporting Information.
Co-reporter:Ann Marie Woys, Sudipta S. Mukherjee, David R. Skoff, Sean D. Moran, and Martin T. Zanni
The Journal of Physical Chemistry B 2013 Volume 117(Issue 17) pp:5009-5018
Publication Date(Web):March 28, 2013
DOI:10.1021/jp402946c
A series of non-natural infrared probes is reported that consist of a metal-tricarbonyl modified with a −(CH2)n– linker and cysteine-specific leaving group. They can be site-specifically attached to proteins using mutagenesis and similar protocols for EPR spin labels, which have the same leaving group. We characterize the label’s frequencies and lifetimes using 2D IR spectroscopy in solvents of varying dielectric. The frequency range spans 10 cm–1, and the variation in lifetimes ranges from 6 to 19 ps, indicating that these probes are very sensitive to their environments. Also, we attached probes with −(CH2)–, −(CH2)3–, and −(CH2)4– linkers to ubiquitin at positions 6 and 63 and collected spectra in aqueous buffer. The frequencies and lifetimes were correlated for 3C and 4C linkers, as they were in the solvents, but did not correlate for the 1C linker. We conclude that lifetime measures solvation, whereas frequency reflects the electrostatics of the environment, which in the case of the 1C linker is a measure of the protein electrostatic field. We also labeled V71C α-synuclein in buffer and membrane-bound. Unlike most other infrared labels, this label has extremely strong cross sections and thus can be measured with 2D IR spectroscopy at sub-millimolar concentrations. We expect that these labels will find use in studying the structure and dynamics of membrane-bound, aggregated, and kinetically evolving proteins for which high signal-to-noise at low protein concentrations is imperative.
Co-reporter:Bei Ding, Jennifer E. Laaser, Yuwei Liu, Pengrui Wang, Martin T. Zanni, and Zhan Chen
The Journal of Physical Chemistry B 2013 Volume 117(Issue 47) pp:14625-14634
Publication Date(Web):October 25, 2013
DOI:10.1021/jp408064b
Sum-frequency generation (SFG) vibrational spectroscopy is often used to probe the backbone structures and orientations of polypeptides at surfaces. Using the ovispirin-1 polypeptide at the solid/liquid interface of polystyrene, we demonstrate for the first time that SFG can probe the polarization response of a single-isotope-labeled residue. To interpret the spectral intensities, we simulated the spectra using an excitonic Hamiltonian approach. We show that the polarization dependence of either the label or the unlabeled amide I band alone does not provide sufficient structural constraints to obtain both the tilt and the twist of the ovispirin helix at a solid/liquid interface, but that both can be determined from the polarization dependence of the complete spectrum. For ovispirin, the detailed analysis of the polarized SFG experimental data shows that the helix axis is tilted at roughly 138° from the surface normal, and the transition dipole of the isotope-labeled C═O group is tilted at 23° from the surface normal, with the hydrophobic region facing the polystyrene surface. We further demonstrate that the Hamiltonian approach is able to address the coupling effect and the structural disorder. For comparison, we also collected the FTIR spectrum of ovispirin under similar conditions, which reveals the enhanced sensitivity of SFG for structural studies of single monolayer peptide surfaces. Our study provides insight into how structural and environmental effects appear in SFG spectra of the amide I band and establishes that SFG of isotope-labeled peptides will be a powerful technique for elucidating secondary structures with residue-by-residue resolution.
Co-reporter:Emily B. Dunkelberger, Ann Marie Woys, and Martin T. Zanni
The Journal of Physical Chemistry B 2013 Volume 117(Issue 49) pp:15297-15305
Publication Date(Web):May 9, 2013
DOI:10.1021/jp402942s
A form of chemical exchange, hydrogen–deuterium exchange (HDX), has long been used as a method for studying the secondary and tertiary structure of peptides and proteins using mass spectrometry and NMR spectroscopy. Using two-dimensional infrared (2D IR) spectroscopy, we resolve cross peaks between the amide II band and a 13C18O isotope-labeled amide I band, which we show measures HDX with site-specific resolution. By rapidly scanning 2D IR spectra using mid-IR pulse shaping, we monitor the kinetics of HDX exchange on-the-fly. For the antimicrobial peptide ovispirin bound to membrane bilayers, we find that the amide II peak decays with a biexponential with rate constants of 0.54 ± 0.02 and 0.12 ± 0.01 min–1, which is a measure of the overall HDX in the peptide. The cross peaks between Ile-10-labeled ovispirin and the amide II mode, which specifically monitor HDX kinetics at Ile-10, decay with a single rate constant of 0.36 ± 0.1 min–1. Comparing this exchange rate to theoretically determined exchange rates of Ile-10 for ovispirin in a solution random coil configuration, the exchange rate at Ile-10 is at least 100 times slower, consistent with the known α-helix structure of ovispirin in bilayers. Because backbone isotope labels produce only a very small shift of the amide II band, site-specific HDX cannot be measured with FTIR spectroscopy, which is why 2D IR spectroscopy is needed for these measurements.
Co-reporter:Lauren E. Buchanan;Emily B. Dunkelberger;Pin-Nan Cheng;Chi-Cheng Chiu;Huong Q. Tran;James S. Nowick;Juan J. de Pablo;Ping Cao;Daniel P. Raleigh
PNAS 2013 Volume 110 (Issue 48 ) pp:19285-19290
Publication Date(Web):2013-11-26
DOI:10.1073/pnas.1314481110
Amyloid formation is implicated in more than 20 human diseases, yet the mechanism by which fibrils form is not well understood. We use 2D infrared spectroscopy and isotope labeling to monitor the kinetics of fibril formation by human islet amyloid polypeptide (hIAPP or amylin) that is associated with type 2 diabetes. We find that an oligomeric intermediate forms during the lag phase with parallel β-sheet structure in a region that is ultimately a partially disordered loop in the fibril. We confirm the presence of this intermediate, using a set of homologous macrocyclic peptides designed to recognize β-sheets. Mutations and molecular dynamics simulations indicate that the intermediate is on pathway. Disrupting the oligomeric β-sheet to form the partially disordered loop of the fibrils creates a free energy barrier that is the origin of the lag phase during aggregation. These results help rationalize a wide range of previous fragment and mutation studies including mutations in other species that prevent the formation of amyloid plaques.
Co-reporter:Sean D. Moran ; Sean M. Decatur
Journal of the American Chemical Society 2012 Volume 134(Issue 44) pp:18410-18416
Publication Date(Web):October 19, 2012
DOI:10.1021/ja307898g
Identifying the sequence and structural content of residues that compose the core of amyloid fibrils is important because core regions likely control the process of fibril extension and provide potential drug targets. Human γD-crystallin is an eye lens protein that aggregates into amyloid fibrils under acidic conditions. In this manuscript, we use a pepsin enzymatic digest to isolate the core of the amyloid fibrils. The sequence of the core is identified with MALDI MS/MS and its structure is probed with 2D IR spectroscopy and 13C isotope labeling. Mass spectrometry of the digest identifies residues 80–163 as the amyloid core, which spans most of the C-terminal domain, the linker, and a small portion of the N-terminal domain. From 2D IR spectroscopy of the digested fibrils, we learn that only the C-terminal domain contributes to the amyloid β-sheets while the N-terminal and linker residues are disordered. A comparison to the native crystal structure reveals that loops and α-helices in the native state must undergo conformational transitions to β-strands upon aggregation. These locations may be good drug binding targets. Besides providing new information about γD -crystallin, this study demonstrates the complementarity of mass spectrometry and 2D IR spectroscopy to obtain both sequence and structure information that neither technique provides individually, which will be especially useful for samples only available in microgram quantities.
Co-reporter:Ann Marie Woys ; Aaron M. Almeida ; Lu Wang ; Chi-Cheng Chiu ; Michael McGovern ; Juan J. de Pablo ; James L. Skinner ; Samuel H. Gellman
Journal of the American Chemical Society 2012 Volume 134(Issue 46) pp:19118-19128
Publication Date(Web):October 31, 2012
DOI:10.1021/ja3074962
Infrared spectroscopy is playing an important role in the elucidation of amyloid fiber formation, but the coupling models that link spectra to structure are not well tested for parallel β-sheets. Using a synthetic macrocycle that enforces a two stranded parallel β-sheet conformation, we measured the lifetimes and frequency for six combinations of doubly 13C═18O labeled amide I modes using 2D IR spectroscopy. The average vibrational lifetime of the isotope labeled residues was 550 fs. The frequencies of the labels ranged from 1585 to 1595 cm–1, with the largest frequency shift occurring for in-register amino acids. The 2D IR spectra of the coupled isotope labels were calculated from molecular dynamics simulations of a series of macrocycle structures generated from replica exchange dynamics to fully sample the conformational distribution. The models used to simulate the spectra include through-space coupling, through-bond coupling, and local frequency shifts caused by environment electrostatics and hydrogen bonding. The calculated spectra predict the line widths and frequencies nearly quantitatively. Historically, the characteristic features of β-sheet infrared spectra have been attributed to through-space couplings such as transition dipole coupling. We find that frequency shifts of the local carbonyl groups due to nearest neighbor couplings and environmental factors are more important, while the through-space couplings dictate the spectral intensities. As a result, the characteristic absorption spectra empirically used for decades to assign parallel β-sheet secondary structure arises because of a redistribution of oscillator strength, but the through-space couplings do not themselves dramatically alter the frequency distribution of eigenstates much more than already exists in random coil structures. Moreover, solvent exposed residues have amide I bands with >20 cm–1 line width. Narrower line widths indicate that the amide I backbone is solvent protected inside the macrocycle. This work provides calculated and experimentally verified couplings for parallel β-sheets that can be used in structure-based models to simulate and interpret the infrared spectra of β-sheet containing proteins and protein assemblies, such as amyloid fibers.
Co-reporter:Emily B. Dunkelberger ; Lauren E. Buchanan ; Peter Marek ; Ping Cao ; Daniel P. Raleigh
Journal of the American Chemical Society 2012 Volume 134(Issue 30) pp:12658-12667
Publication Date(Web):June 26, 2012
DOI:10.1021/ja3039486
Deamidation of asparagine and glutamine is the most common nonenzymatic, post-translational modification. Deamidation can influence the structure, stability, folding, and aggregation of proteins and has been proposed to play a role in amyloid formation. However there are no structural studies of the consequences of deamidation on amyloid fibers, in large part because of the difficulty of studying these materials using conventional methods. Here we examine the effects of deamidation on the kinetics of amyloid formation by amylin, the causative agent of type 2 diabetes. We find that deamidation accelerates amyloid formation and the deamidated material is able to seed amyloid formation by unmodified amylin. Using site-specific isotope labeling and two-dimensional infrared (2D IR) spectroscopy, we show that fibers formed by samples that contain deamidated polypeptide contain reduced amounts of β-sheet. Deamidation leads to disruption of the N-terminal β-sheet between Ala-8 and Ala-13, but β-sheet is still retained near Leu-16. The C-terminal sheet is disrupted near Leu-27. Analysis of potential sites of deamidation together with structural models of amylin fibers reveals that deamidation in the N-terminal β-sheet region may be the cause for the disruption of the fiber structure at both the N- and C-terminal β-sheet. Thus, deamidation is a post-translational modification that creates fibers that have an altered structure but can still act as a template for amylin aggregation. Deamidation is very difficult to detect with standard methods used to follow amyloid formation, but isotope-labeled IR spectroscopy provides a means for monitoring sample degradation and investigating the structural consequences of deamidation.
Co-reporter:Sean D. Moran;Ann Marie Woys;Sean M. Decatur;Lauren E. Buchanan;Eli Bixby
PNAS 2012 Volume 109 (Issue 9 ) pp:
Publication Date(Web):2012-02-28
DOI:10.1073/pnas.1117704109
The structural eye lens protein γD-crystallin is a major component of cataracts, but its conformation when aggregated is unknown. Using expressed protein ligation, we uniformly 13C labeled one of the two Greek key domains so that they are individually resolved in two-dimensional (2D) IR spectra for structural and kinetic analysis. Upon acid-induced amyloid fibril formation, the 2D IR spectra reveal that the C-terminal domain forms amyloid β-sheets, whereas the N-terminal domain becomes extremely disordered but lies in close proximity to the β-sheets. Two-dimensional IR kinetics experiments show that fibril nucleation and extension occur exclusively in the C-terminal domain. These results are unexpected because the N-terminal domain is less stable in the monomer form. Isotope dilution experiments reveal that each C-terminal domain contributes two or fewer adjacent β-strands to each β-sheet. From these observations, we propose an initial structural model for γD-crystallin amyloid fibrils. Because only 1 μg of protein is required for a 2D IR spectrum, even poorly expressing proteins can be studied under many conditions using this approach. Thus, we believe that 2D IR and protein ligation will be useful for structural and kinetic studies of many protein systems for which IR spectroscopy can be straightforwardly applied, such as membrane and amyloidogenic proteins.
Co-reporter:Joshua Manor, Esther S. Feldblum, Martin T. Zanni, and Isaiah T. Arkin
The Journal of Physical Chemistry Letters 2012 Volume 3(Issue 7) pp:939-944
Publication Date(Web):March 12, 2012
DOI:10.1021/jz300150v
The polarity pattern of a macromolecule is of utmost importance to its structure and function. For example, one of the main driving forces for protein folding is the burial of hydrophobic residues. Yet polarity remains a difficult property to measure experimentally, due in part to its nonuniformity in the protein interior. Herein, we show that Fourier transform infrared (FTIR) linewidth analysis of noninvasive 1-13C═18O labels can be used to obtain a reliable measure of the local polarity, even in a highly multiphasic system, such as a membrane protein. We show that in the Influenza M2 H+ channel, residues that line the pore are located in an environment that is as polar as fully solvated residues, while residues that face the lipid acyl chains are located in an apolar environment. Taken together, FTIR linewidth analysis is a powerful, yet chemically nonperturbing approach to examine one of the most important properties in proteins: polarity.Keywords: channels; hydration; hydrophobicity; isotopic labels; line broadening; linewidth; membrane proteins;
Co-reporter:Chris T. Middleton, Lauren E. Buchanan, Emily B. Dunkelberger, and Martin T. Zanni
The Journal of Physical Chemistry Letters 2011 Volume 2(Issue 18) pp:2357-2361
Publication Date(Web):August 25, 2011
DOI:10.1021/jz201024m
We report that the waiting time delay in 2D IR pulse sequences can be used to suppress signals from structurally disordered regions of amyloid fibrils. At a waiting time delay of 1.0 ps, the random coil vibrational modes of amylin fibrils are no longer detectable, leaving only the sharp excitonic vibrational features of the fibril β-sheets. Isotope labeling with 13C18O reveals that structurally disordered residues decay faster than residues protected from solvent. Because structural disorder is usually accompanied by hydration, we conclude that the shorter lifetimes of random-coil residues are due to solvent exposure. These results indicate that 2D IR pulse sequences can utilize the waiting time to better resolve solvent-protected regions of peptides and that local mode lifetimes should be included in simulations of 2D IR spectra.Keywords: 2D IR spectroscopy; amide-I vibration; amylin; amyloid fibrils; isotope labeling; protein and peptide structure; secondary structure; vibrational lifetimes;
Co-reporter:Jennifer E. Laaser, Wei Xiong, and Martin T. Zanni
The Journal of Physical Chemistry B 2011 Volume 115(Issue 11) pp:2536-2546
Publication Date(Web):March 2, 2011
DOI:10.1021/jp200757x
Sum-frequency generation (SFG) spectroscopy is a ubiquitous tool in the surface sciences. It provides infrared transition frequencies and line shapes that probe the structure and environment of molecules at interfaces. In this article, we apply techniques learned from the multidimensional spectroscopy community to SFG spectroscopy. We implement balanced heterodyne detection to remove scatter and the local oscillator background. Heterodyning also separates the resonant and nonresonant signals by acquiring both the real and imaginary parts of the spectrum. We utilize mid-IR pulse shaping to control the phase and delay of the mid-IR pump pulse. Pulse shaping allows phase cycling for data collection in the rotating frame and additional background subtraction. We also demonstrate time-domain data collection, which is a Fourier transform technique, and has many advantages in signal throughput, frequency resolution, and line shape accuracy over existing frequency domain methods. To demonstrate time-domain SFG spectroscopy, we study an aryl isocyanide on gold, and find that the system has an inhomogeneous structural distribution, in agreement with computational results, but which was not resolved by previous frequency-domain SFG studies. The ability to rapidly and actively manipulate the mid-IR pulse in an SFG pules sequence makes possible new experiments and more accurate spectra.
Co-reporter:Ann Marie Woys ; Yu-Shan Lin ; Allam S. Reddy ; Wei Xiong ; Juan J. de Pablo ; James L. Skinner
Journal of the American Chemical Society 2010 Volume 132(Issue 8) pp:2832-2838
Publication Date(Web):February 5, 2010
DOI:10.1021/ja9101776
We report a structural study on the membrane binding of ovispirin using 2D IR line shape analysis, isotope labeling, and molecular dynamics simulations. Ovispirin is an antibiotic polypeptide that binds to the surfaces of membranes as an α-helix. By resolving individual backbone vibrational modes (amide I) using 1-13C═18O labeling, we measured the 2D IR line shapes for 15 of the 18 residues in this peptide. A comparison of the line shapes reveals an oscillation in the inhomogeneous line width that has a period equal to that of an α-helix (3.6 amino acids). The periodic trend is caused by the asymmetric environment of the membrane bilayer that exposes one face of the α-helix to much stronger environmental electrostatic forces than the other. We compare our experimental results to 2D IR line shapes calculated using the lowest free energy structure identified from molecular dynamics simulations. These simulations predict a periodic trend similar to the experiment and lead us to conclude that ovispirin lies in the membrane just below the headgroups, is tilted, and may be kinked. Besides providing insight into the antibiotic mechanism of ovispirin, our procedure provides an infrared method for studying peptide and protein structures that relies on the natural vibrational modes of the backbone. It is a complementary method to other techniques that utilize line shapes, such as fluorescence, NMR, and ESR spectroscopies, because it does not require mutations, the spectra can be quantitatively simulated using molecular dynamics, and the technique can be applied to difficult-to-study systems like ion channels, aggregated proteins, and kinetically evolving systems.
Co-reporter:Wei Xiong ; Jennifer E. Laaser ; Peerasak Paoprasert ; Ryan A. Franking ; Robert J. Hamers ; Padma Gopalan
Journal of the American Chemical Society 2009 Volume 131(Issue 50) pp:18040-18041
Publication Date(Web):November 30, 2009
DOI:10.1021/ja908479r
We use nonlinear 2D IR spectroscopy to study TiO2 nanocrystalline thin films sensitized with a Re dye. We find that the free electron signal, which often obscures the vibrational features in the transient absorption spectrum, is not observed in the 2D IR spectra. Its absence allows the vibrational features of the dye to be much better resolved than with the typical IR absorption probe. We observe multiple absorption bands but no cross peaks in the 2D IR spectra, which indicates that the dyes have at least three conformations. Furthermore, by using a pulse sequence in which we initiate electron transfer in the middle of the infrared pulse train, we are able to assign the excited state features by correlating them to the ground state vibrational modes and determine that the three conformations have different time scales and cross sections for electron injection. 2D IR spectroscopy is proving to be very useful in disentangling overlapping structural distributions in biological and chemical physics processes. These experiments demonstrate that nonlinear infrared probes are also a powerful new tool for studying charge transfer at interfaces.
Co-reporter:Sang-Hee Shim and Martin T. Zanni  
Physical Chemistry Chemical Physics 2009 vol. 11(Issue 5) pp:748-761
Publication Date(Web):10 Dec 2008
DOI:10.1039/B813817F
We have recently developed a new and simple way of collecting 2D infrared and visible spectra that utilizes a pulse shaper and a partly collinear beam geometry. 2D IR and Vis spectroscopies are powerful tools for studying molecular structures and their dynamics. They can be used to correlate vibrational or electronic eigenstates, measure energy transfer rates, and quantify the dynamics of lineshapes, for instance, all with femtosecond time-resolution. As a result, they are finding use in systems that exhibit fast dynamics, such as sub-millisecond chemical and biological dynamics, and in hard-to-study environments, such as in membranes. While powerful, these techniques have been difficult to implement because they require a series of femtosecond pulses to be spatially and temporally overlapped with precise time-resolution and interferometric phase stability. However, many of the difficulties associated with implementing 2D spectroscopies are eliminated by using a pulse shaper and a simple beam geometry, which substantially lowers the technical barriers required for researchers to enter this exciting field while simultaneously providing many new capabilities. The aim of this paper is to provide an overview of the methods for collecting 2D spectra so that an outsider considering using 2D spectroscopy in their own research can judge which approach would be most suitable for their research aims. This paper focuses primarily on 2D IR spectroscopy, but also includes our recent work on adapting this technology to collecting 2D Vis spectra. We review work that has already been published as well as cover several topics that we have not reported previously, including phase cycling methods to remove background signals, eliminate unwanted scatter, and shift data collection into the rotating frame.
Co-reporter:Wei Xiong, David B. Strasfeld, Sang-Hee Shim, Martin T. Zanni
Vibrational Spectroscopy 2009 Volume 50(Issue 1) pp:136-142
Publication Date(Web):26 May 2009
DOI:10.1016/j.vibspec.2008.10.010
Two-dimensional infrared spectroscopy is a powerful tool for studying molecular structure and kinetics. However, standard ways of implementing the technique are not amenable to samples with high optical densities. In this paper, we demonstrate that a shaper-based automated 2D IR spectrometer largely compensates for most of the distortions caused by high optical densities. By comparing a series of 2D IR spectra collected with varying concentrations and sample thicknesses, we find that high quality 2D IR spectra can be obtained at optical densities of >1.2 when these spectra are collected using a pulse shaping method recently developed in our lab. Furthermore, distortions due to high OD primarily appear along the pump axis and are largely absent along the probe axis. Using this knowledge, we have applied our approach to study a high optical density sample of a truncated form of the human islet amyloid peptide that is involved in Type 2 diabetes. Our methodology promises to aid in the interpretation of 2D IR lineshapes for systems where the optical density cannot be controlled, such as in protein folding or chemical reactions where large changes in optical density occur during the kinetics.
Co-reporter:Yun L. Ling, David B. Strasfeld, Sang-Hee Shim, Daniel P. Raleigh and Martin T. Zanni
The Journal of Physical Chemistry B 2009 Volume 113(Issue 8) pp:2498-2505
Publication Date(Web):January 30, 2009
DOI:10.1021/jp810261x
Islet amyloid polypeptide (IAPP, also known as amylin) is responsible for pancreatic amyloid deposits in type 2 diabetes. The deposits, as well as intermediates in their assembly, are cytotoxic to pancreatic β-cells and contribute to the loss of β-cell mass associated with type 2 diabetes. The factors that trigger islet amyloid deposition in vivo are not well understood, but peptide membrane interactions have been postulated to play an important role in islet amyloid formation. To better understand the role of membrane interactions in amyloid formation, two-dimensional infrared (2D IR) spectroscopy was used to compare the kinetics of amyloid formation for human IAPP both in the presence and in the absence of negatively charged lipid vesicles. Comparison of spectral features and kinetic traces from the two sets of experiments provides evidence for the formation of an ordered intermediate during the membrane-mediated assembly of IAPP amyloid. A characteristic transient spectral feature is detected during amyloid formation in the presence of vesicles that is not observed in the absence of vesicles. The spectral feature associated with the intermediate raises in intensity during the self-assembly process and subsequently decays in intensity in the classic manner of a kinetic intermediate. Studies with rat IAPP, a variant that is known to interact with membranes but does not form amyloid, confirm the presence of an intermediate. The analysis of 2D IR spectra in terms of specific structural features is discussed. The unique combination of time and secondary structure resolution of 2D IR spectroscopy has enabled the time-evolution of a hIAPP intermediate to be directly monitored for the first time. The data presented here demonstrates the utility of 2D IR spectroscopy for studying membrane-catalyzed amyloid formation.
Co-reporter:David B. Strasfeld, Yun L. Ling, Ruchi Gupta, Daniel P. Raleigh and Martin T. Zanni
The Journal of Physical Chemistry B 2009 Volume 113(Issue 47) pp:15679-15691
Publication Date(Web):November 2, 2009
DOI:10.1021/jp9072203
The 37-residue human islet amyloid polypeptide (hIAPP or amylin) self-assembles into fibers, the assembly of which has been associated with the disease mechanism of type II diabetes. Infrared spectroscopy in conjunction with isotope labeling is proving to be a powerful tool for studying the aggregation process of hIAPP and other amyloid forming proteins with residue specific structure and kinetic information, but the relationship between the spectroscopic observables and the structure is not fully established. We report a detailed analysis of the linear and 2D IR spectra of hIAPP fibers isotope labeled at seven different residue positions. The features of the 2D IR spectra, including the frequencies, linewidths, intensities, and polarization dependence of the diagonal and cross-peaks, rely heavily on the position of the isotope labeled residue. In order to understand how these measured parameters depend on fiber secondary and tertiary structure, we have simulated 1D and 2D IR spectra utilizing idealized structural models in addition to a recently published solid-state NMR based model of the amyloid fibril. The analysis provides a more rigorous foundation for interpreting the infrared spectra of amyloids. In addition, we demonstrate that 2D IR spectra can be employed to distinguish between residues in β-sheets versus those in turn regions, and that transitional residues between secondary structures can be identified by the suppression of their cross-peaks in 2D IR spectra. This latter approach is not limited to amyloid fibrils and will be generally useful in identifying regions of secondary structure in proteins using 2D IR spectroscopy and isotope labeling.
Co-reporter:Sang-Hee Shim;David B. Strasfeld;Daniel P. Raleigh;Ruchi Gupta;Yun L. Ling
PNAS 2009 Volume 106 (Issue 16 ) pp:6614-6619
Publication Date(Web):2009-04-21
DOI:10.1073/pnas.0805957106
There is considerable interest in uncovering the pathway of amyloid formation because the toxic properties of amyloid likely stems from prefibril intermediates and not the fully formed fibrils. Using a recently invented method of collecting 2-dimensional infrared spectra and site-specific isotope labeling, we have measured the development of secondary structures for 6 residues during the aggregation process of the 37-residue polypeptide associated with type 2 diabetes, the human islet amyloid polypeptide (hIAPP). By monitoring the kinetics at 6 different labeled sites, we find that the peptides initially develop well-ordered structure in the region of the chain that is close to the ordered loop of the fibrils, followed by formation of the 2 parallel β-sheets with the N-terminal β-sheet likely forming before the C-terminal sheet. This experimental approach provides a detailed view of the aggregation pathway of hIAPP fibril formation as well as a general methodology for studying other amyloid forming proteins without the use of structure-perturbing labels.
Co-reporter:Sang-Hee Shim;David B. Strasfeld;Yun L. Ling;
Proceedings of the National Academy of Sciences 2007 104(36) pp:14197-14202
Publication Date(Web):May 14, 2007
DOI:10.1073/pnas.0700804104
The capability of 2D IR spectroscopy to elucidate time-evolving structures is enhanced by a programmable mid-IR pulse shaper that greatly improves the ease, speed, and accuracy of data collection. Traditional ways of collecting 2D IR spectra are difficult to implement, cause distorted peak shapes, and result in poor time resolution and/or phase problems. We report on several methods for collecting 2D IR spectra by using a computer-controlled germanium acoustooptic modulator that overcomes the above problems. The accuracy and resolution of each method is evaluated by using model metal carbonyl compounds that have well defined lineshapes. Furthermore, phase cycling can now be employed to largely alleviate background scatter from heterogeneous samples. With these methods in hand, we apply 2D IR spectroscopy to study the structural diversity in amyloid fibers of aggregated human islet amyloid polypeptide (hIAPP), which is involved with type 2 diabetes. The 2D IR spectra reveal that the β-sheet fibers have a large structural distribution, as evidenced by an inhomogeneously broadened β-sheet peak and strong coupling to random coil conformations. Structural diversity is an important characteristic of hIAPP because it may be that partly folded peptides cause the disease. This experiment on hIAPP is an example of how computer generation of 2D IR pulse sequences is a key step toward automating 2D IR spectroscopy, so that new pulse sequences can be implemented quickly and a diverse range of systems can be studied more easily.
Co-reporter:Chris T. Middleton, Ann Marie Woys, Sudipta S. Mukherjee, Martin T. Zanni
Methods (September 2010) Volume 52(Issue 1) pp:12-22
Publication Date(Web):1 September 2010
DOI:10.1016/j.ymeth.2010.05.002
We describe a methodology for studying protein kinetics using a rapid-scan technology for collecting 2D IR spectra. In conjunction with isotope labeling, 2D IR spectroscopy is able to probe the secondary structure and environment of individual residues in polypeptides and proteins. It is particularly useful for membrane and aggregate proteins. Our rapid-scan technology relies on a mid-IR pulse shaper that computer generates the pulse shapes, much like in an NMR spectrometer. With this device, data collection is faster, easier, and more accurate. We describe our 2D IR spectrometer, as well as protocols for 13C18O isotope labeling, and then illustrate the technique with an application to the aggregation of the human islet amyloid polypeptide implicated in type 2 diabetes.
Co-reporter:Peter Marek, Sudipta Mukherjee, Martin T. Zanni, Daniel P. Raleigh
Journal of Molecular Biology (23 July 2010) Volume 400(Issue 4) pp:878-888
Publication Date(Web):23 July 2010
DOI:10.1016/j.jmb.2010.05.041
Amyloid formation normally exhibits a lag phase followed by a growth phase, which leads to amyloid fibrils. Characterization of the species populated during the lag phase is experimentally challenging, but is critical since the most toxic entities may be pre-fibrillar species. p-Cyanophenylalanine (FC≡N) fluorescence is used to probe the nature of lag-phase species populated during the formation of amyloid by human islet amyloid polypeptide. The polypeptide contains two phenylalanines at positions 15 and 23 and a single tyrosine located at the C-terminus. Each aromatic residue was separately replaced by FC≡N. The substitutions do not perturb amyloid formation relative to wild-type islet amyloid polypeptide as detected using thioflavin T fluorescence and electron microscopy. FC≡N fluorescence is high when the cyano group is hydrogen bonded and low when it is not. It can also be quenched via Förster resonance energy transfer to tyrosine. Fluorescence intensity was monitored in real time and revealed that all three positions remained exposed to solvent during the lag phase but less exposed than unstructured model peptides. The time course of amyloid formation as monitored by thioflavin T fluorescence and FC≡N fluorescence is virtually identical. Fluorescence quenching experiments confirmed that each residue remains exposed during the lag phase. These results place significant constraints on the nature of intermediates that are populated during the lag phase and indicate that significant sequestering of the aromatic side chains does not occur until β-structure sufficient to bind thioflavin T has developed. Seeding studies and analysis of maximum rates confirm that sequestering of the cyano groups occurs concomitantly with the development of thioflavin T binding capability. Overall, the process of amyloid formation and growth appears to be remarkably homogenous in terms of side-chain ordering. FC≡N also provides information about fibril structure. Fluorescence emission measurements, infrared measurements, and quenching studies indicate that the aromatic residues are differentially exposed in the fibril state with Phe15 being the most exposed. FC≡N is readily accommodated into proteins; thus, the approach should be broadly applicable.
Co-reporter:Joshua Manor, Prabuddha Mukherjee, Yu-Shan Lin, Hadas Leonov, ... Isaiah T. Arkin
Structure (13 February 2009) Volume 17(Issue 2) pp:247-254
Publication Date(Web):13 February 2009
DOI:10.1016/j.str.2008.12.015
The pH-controlled M2 protein from influenza A is a critical component of the virus and serves as a target for the aminoadamantane antiflu agents that block its H+ channel activity. To better understand its H+ gating mechanism, we investigated M2 in lipid bilayers with a new combination of IR spectroscopies and theory. Linear Fourier transform infrared (FTIR) spectroscopy was used to measure the precise orientation of the backbone carbonyl groups, and 2D infrared (IR) spectroscopy was used to identify channel-lining residues. At low pH (open state), our results match previously published solid-state NMR and X-ray structures remarkably well. However, at neutral pH when the channel is closed, our measurements indicate that a large conformational change occurs that is consistent with the transmembrane α-helices rotating by one amino acid register—a structural rearrangement not previously observed. The combination of simulations and isotope-labeled FTIR and 2D IR spectroscopies provides a noninvasive means of interrogating the structures of membrane proteins in general and ion channels in particular.
Co-reporter:Thomas J. McDonough, Lushuai Zhang, Susmit Singha Roy, Nicholas M. Kearns, Michael S. Arnold, Martin T. Zanni and Trisha L. Andrew
Physical Chemistry Chemical Physics 2017 - vol. 19(Issue 6) pp:NaN4820-4820
Publication Date(Web):2017/01/23
DOI:10.1039/C6CP06454J
We compare the ultrafast dynamics of singlet fission and charge generation in pentacene films grown on glass and graphene. Pentacene grown on graphene is interesting because it forms large crystals with the long axis of the molecules “lying-down” (parallel to the surface). At low excitation fluence, spectra for pentacene on graphene contain triplet absorptions at 507 and 545 nm and no bleaching at 630 nm, which we show is due to the orientation of the pentacene molecules. We perform the first transient absorption anisotropy measurements on pentacene, observing negative anisotropy of the 507 and 545 nm peaks, consistent with triplet absorption. A broad feature at 853 nm, observed on both glass and graphene, is isotropic, suggesting hole absorption. At high fluence, there are additional features, whose kinetics and anisotropies are not explained by heating, that we assign to charge generation; we propose a polaron pair absorption at 614 nm. The lifetimes are shorter at high fluence for both pentacene on glass and graphene, indicative of triplet–triplet annihilation that likely enhances charge generation. The anisotropy decays more slowly for pentacene on graphene than on glass, in keeping with the smaller domain size observed via atomic force microscopy. Coherent acoustic phonons are observed for pentacene on graphene, which is a consequence of more homogeneous domains. Measuring the ultrafast dynamics of pentacene as a function of molecular orientation, fluence, and polarization provides new insight to previous spectral assignments.
Co-reporter:Sang-Hee Shim and Martin T. Zanni
Physical Chemistry Chemical Physics 2009 - vol. 11(Issue 5) pp:NaN761-761
Publication Date(Web):2008/12/10
DOI:10.1039/B813817F
We have recently developed a new and simple way of collecting 2D infrared and visible spectra that utilizes a pulse shaper and a partly collinear beam geometry. 2D IR and Vis spectroscopies are powerful tools for studying molecular structures and their dynamics. They can be used to correlate vibrational or electronic eigenstates, measure energy transfer rates, and quantify the dynamics of lineshapes, for instance, all with femtosecond time-resolution. As a result, they are finding use in systems that exhibit fast dynamics, such as sub-millisecond chemical and biological dynamics, and in hard-to-study environments, such as in membranes. While powerful, these techniques have been difficult to implement because they require a series of femtosecond pulses to be spatially and temporally overlapped with precise time-resolution and interferometric phase stability. However, many of the difficulties associated with implementing 2D spectroscopies are eliminated by using a pulse shaper and a simple beam geometry, which substantially lowers the technical barriers required for researchers to enter this exciting field while simultaneously providing many new capabilities. The aim of this paper is to provide an overview of the methods for collecting 2D spectra so that an outsider considering using 2D spectroscopy in their own research can judge which approach would be most suitable for their research aims. This paper focuses primarily on 2D IR spectroscopy, but also includes our recent work on adapting this technology to collecting 2D Vis spectra. We review work that has already been published as well as cover several topics that we have not reported previously, including phase cycling methods to remove background signals, eliminate unwanted scatter, and shift data collection into the rotating frame.
decacarbonyldirhenium
Poly[[2,2'-bipyridine]-6,6'-diyl(9,9-dioctyl-9H-fluorene-2,7-diyl)]
[2,2'-Bithiophene]-5,5'-dicarbonyl dichloride
[2,2'-Bipyridine]-4-carboxylic acid, methyl ester
Butanedioic acid, mono[2-(trimethylsilyl)ethyl] ester