Co-reporter:Matthew M. Champion;Emily A. Williams;Richard S. Pinapati;Patricia A. DiGiuseppe Champion
Journal of Proteome Research November 7, 2014 Volume 13(Issue 11) pp:5151-5164
Publication Date(Web):2017-2-22
DOI:10.1021/pr500484w
The Esx/WXG-100 (ESAT-6/Wss) exporters are multiprotein complexes that promote protein translocation across the cytoplasmic membrane in a diverse range of pathogenic and nonpathogenic bacterial species. The Esx-1 (ESAT-6 System-1) system mediates virulence factor translocation in mycobacterial pathogens, including the human pathogen Mycobacterium tuberculosis. Although several genes have been associated with Esx-1-mediated transport and virulence, the contribution of individual Esx-1 genes to export is largely undefined. A unique aspect of Esx-1 export is that several substrates require each other for export/stability. We exploited substrate “codependency” to identify Esx-1 substrates. We simultaneously quantified changes in the levels of 13 Esx-1 proteins from both secreted and cytosolic protein fractions generated from 16 Esx-1-deficient Mycobacterium marinum strains in a single experiment using MRM/SRM targeted mass spectrometry. This expansion of measurable Esx-1 proteins allowed us to define statistical rules for assigning novel substrates using phenotypic profiles of known Esx-1 substrates. Using this approach, we identified three additional Esx-1 substrates encoded by the esx-1 region. Our studies begin to address how disruption of specific genes affects several proteins in the Esx-1 complex. Overall, our findings illuminate relationships between Esx-1 proteins and create a framework for the identification of secreted substrates applicable to other protein exporters and pathways.Keywords: Esx-1; EsxA; MRM/SRM; Mycobacterium marinum; RD1; secretion; substrate identification; targeted proteomics;
Co-reporter:Yihan Li, Roza Wojcik, Norman J. Dovichi, and Matthew M. Champion
Analytical Chemistry 2012 Volume 84(Issue 14) pp:6116
Publication Date(Web):June 11, 2012
DOI:10.1021/ac300926h
We demonstrate the use of capillary zone electrophoresis with an electrokinetic sheath-flow electrospray interface coupled to a triple-quadrupole mass spectrometer for the accurate and precise quantification of Leu-enkephalin in a complex mixture using multiple-reaction monitoring (MRM). Assay time is <6 min, with no re-equilibration required between runs. A standard curve of Leu-enkephalin was performed in the presence of a background tryptic digest of bovine albumin. We demonstrate reasonably reproducible peak heights (21% relative standard deviation), retention times (better than 1% relative standard deviation), and robust electrospray quality. Our limit of detection (3σ) was 60 pM, which corresponds to the injection of 335 zmol of peptide. This is a 10–20-fold improvement in mass sensitivity than we have obtained by nano HPLC/MRM and substantially better than reported for LC/MS/MS. Further quantification was performed in the presence of stable-isotope-labeled versions of the peptides; under these conditions, linearity was observed across nearly 4 orders of magnitude. The concentration detection limit was 240 pM for the stable-isotope-labeled quantification.