Co-reporter:Stephen Sproules, Aston A. Eagle, Graham N. George, Jonathan M. White, and Charles G. Young
Inorganic Chemistry May 1, 2017 Volume 56(Issue 9) pp:5189-5189
Publication Date(Web):April 17, 2017
DOI:10.1021/acs.inorgchem.7b00331
Orange Tp*WSCl2 has been synthesized from the reactions of Tp*WOCl2 with boron sulfide in refluxing toluene or Tp*WS2Cl with PPh3 in dichloromethane at room temperature. Mononuclear sulfido-tungsten(V) complexes, Tp*WSXY {X = Y = Cl, OPh, SPh, SePh; X = Cl, Y = OPh; XY = toluene-3,4-dithiolate (tdt), quinoxaline-2,3-dithiolate (qdt); and Tp* = hydrotris(3,5-dimethylpyrazol-1-yl)borate} were prepared by metathesis of Tp*WSCl2 with the respective alkali metal salt of X–/XY2–, or [NHEt3]2(qdt). The complexes were characterized by microanalysis, mass spectrometry, electrochemistry, and infrared (IR), electron paramagnetic resonance (EPR) and electronic absorption spectroscopies. The molecular structures of Tp*WS(OPh)2, Tp*WS(SePh)2, and Tp*WS(tdt) have been determined by X-ray crystallography. The six-coordinate, distorted-octahedral W centers are coordinated by terminal sulfido (W≡S = 2.128(2) – 2.161(1) Å), terdentate facial Tp*, and monodentate/bidentate O/S/Se-donor ligands. The sulfido-W(V) complexes are characterized by lower energy electronic transitions, smaller giso, and larger Aiso(183W) values, and more positive reduction potentials compared with their oxo-W(V) counterparts. This series has been probed by sulfur K-edge X-ray absorption spectroscopy (XAS), the spectra being assigned by comparison to Tp*WOXY (X = Y = SPh; XY = tdt, qdt) and time-dependent density functional theoretical (TD-DFT) calculations. This study provides insight into the electronic nature and chemistry of the catalytically and biologically important sulfido-W unit.
Co-reporter:Sonia Bajo, Gillian Laidlaw, Alan R. Kennedy, Stephen Sproules, and David J. Nelson
Organometallics April 24, 2017 Volume 36(Issue 8) pp:1662-1662
Publication Date(Web):April 6, 2017
DOI:10.1021/acs.organomet.7b00208
Detailed kinetic studies of the reaction of a model Ni0 complex with a range of aryl electrophiles have been conducted. The reactions proceed via a fast ligand exchange pre-equilibrium, followed by oxidative addition to produce either [NiIX(dppf)] (and biaryl) or [NiII(Ar)X(dppf)]; the ortho substituent of the aryl halide determines selectivity between these possibilities. A reactivity scale is presented in which a range of substrates is quantitatively ranked in order of the rate at which they undergo oxidative addition. The rate of oxidative addition is loosely correlated to conversion in prototypical cross-coupling reactions. Substrates that lead to NiI products in kinetic experiments produce more homocoupling products under catalytic conditions.
Co-reporter:Nicholas A. Spencer, Evert J. Ditzel, Justin S. J. Hargreaves and Stephen Sproules
Journal of Materials Chemistry A 2016 vol. 4(Issue 18) pp:7036-7044
Publication Date(Web):23 Mar 2016
DOI:10.1039/C6TA01053A
It is shown that control of the degree of coking can lead to the observation of hyperfine structures in the carbonaceous residues deposited from methanol over mordenite (H-MOR) at temperatures relevant to the conversion of methanol to hydrocarbons. EPR measurements of the catalyst samples at various times on stream have been recorded, with a rich hyperfine splitting pattern observed in the early stages of the reaction. Interpretation of the EPR data with the aid of density functional theoretical calculations has afforded the first definitive assignment of the radical cations formed in high temperature coke. The results detail a shortlist of six species: 2,3/2,6/2,7-dimethylnaphthalenium, 2,3,6-trimethylnaphthalenium, 2,3,6,7-tetramethylnaphthalenium, and anthracenium radical cations whose proton hyperfine splitting profiles match the experimental spectra; 2,3,6,7-tetramethylnaphthalenium showed the best agreement. The observation of these particular isomers of polymethylnaphthalene suggest the formation of more highly branched polyaromatic species is less likely within the confines of the H-MOR 12-membered ring channel. These radicals formed when the catalyst is active may constitute key intermediates in the conversion of methanol to light olefins.
Co-reporter:Jonathan J. Loughrey, Nathan J. Patmore, Amgalanbaatar Baldansuren, Alistair J. Fielding, Eric J. L. McInnes, Michaele J. Hardie, Stephen Sproules and Malcolm A. Halcrow
Chemical Science 2015 vol. 6(Issue 12) pp:6935-6948
Publication Date(Web):20 Aug 2015
DOI:10.1039/C5SC02776D
Three complexes of cyclotricatechylene (H6ctc), [{PtL}3(μ3-ctc)], have been synthesised: (L = 1,2-bis(diphenylphosphino)benzene {dppb}, 1; L = 1,2-bis(diphenylphosphino)ethane {dppe}, 2; L = 4,4′-bis(tert-butyl)-2,2′-bipyridyl {tBu2bipy}, 3). The complexes show three low-potential, chemically reversible voltammetric oxidations separated by ca. 180 mV, corresponding to stepwise oxidation of the [ctc]6− catecholato rings to the semiquinonate level. The redox series [1]0/1+/2+/3+ and [3]0/1+/2+/3+ have been characterised by UV/vis/NIR spectroelectrochemistry. The mono- and di-cations have class II mixed valent character, with reduced radical delocalisation compared to an analogous bis-dioxolene system. The SOMO composition of [1˙]+ and [3˙]+ has been delineated by cw EPR, ENDOR and HYSCORE spectroscopies, with the aid of two monometallic model compounds [PtL(DBsq˙)]+ (DBsqH = 3,5-bis(tert-butyl)-1,2-benzosemiquinone; L = dppe or tBu2bipy). DF and time-dependent DF calculations confirm these interpretations, and demonstrate changes to spin-delocalisation in the ctc macrocycle as it is sequentially oxidised.
Co-reporter:Yong Yan, Joel T. Mague, James P. Donahue and Stephen Sproules
Chemical Communications 2015 vol. 51(Issue 25) pp:5482-5485
Publication Date(Web):08 Dec 2014
DOI:10.1039/C4CC09397F
The molecular and electronic structure of edge-sharing bioctahedral [N(n-Bu)4]3[Re2(mnt)5] is reported here. Despite the short intermetal bond length of 2.6654(2) Å with computed bond order of 1.2, the unpaired electron is localised by the asymmetric ligand distribution, as demonstrated by its remarkable EPR spectrum.
Co-reporter:Upul Jayarathne, Perumalreddy Chandrasekaran, Angelique F. Greene, Joel T. Mague, Serena DeBeer, Kyle M. Lancaster, Stephen Sproules, and James P. Donahue
Inorganic Chemistry 2014 Volume 53(Issue 16) pp:8230-8241
Publication Date(Web):July 28, 2014
DOI:10.1021/ic500256a
A series of mononuclear six-coordinate tungsten compounds spanning formal oxidation states from 0 to +VI, largely in a ligand environment of inert chloride and/or phosphine, was interrogated by tungsten L-edge X-ray absorption spectroscopy. The L-edge spectra of this compound set, comprised of [W0(PMe3)6], [WIICl2(PMePh2)4], [WIIICl2(dppe)2][PF6] (dppe = 1,2-bis(diphenylphosphino)ethane), [WIVCl4(PMePh2)2], [WV(NPh)Cl3(PMe3)2], and [WVICl6], correlate with formal oxidation state and have usefulness as references for the interpretation of the L-edge spectra of tungsten compounds with redox-active ligands and ambiguous electronic structure descriptions. The utility of these spectra arises from the combined correlation of the estimated branching ratio of the L3,2-edges and the L1 rising-edge energy with metal Zeff, thereby permitting an assessment of effective metal oxidation state. An application of these reference spectra is illustrated by their use as backdrop for the L-edge X-ray absorption spectra of [WIV(mdt)2(CO)2] and [WIV(mdt)2(CN)2]2– (mdt2– = 1,2-dimethylethene-1,2-dithiolate), which shows that both compounds are effectively WIV species even though the mdt ligands exist at different redox levels in the two compounds. Use of metal L-edge XAS to assess a compound of uncertain formulation requires: (1) Placement of that data within the context of spectra offered by unambiguous calibrant compounds, preferably with the same coordination number and similar metal ligand distances. Such spectra assist in defining upper and/or lower limits for metal Zeff in the species of interest. (2) Evaluation of that data in conjunction with information from other physical methods, especially ligand K-edge XAS. (3) Increased care in interpretation if strong π-acceptor ligands, particularly CO, or π-donor ligands are present. The electron-withdrawing/donating nature of these ligand types, combined with relatively short metal–ligand distances, exaggerate the difference between formal oxidation state and metal Zeff or, as in the case of [WIV(mdt)2(CO)2], exert the subtle effect of modulating the redox level of other ligands in the coordination sphere.
Co-reporter:Yong Yan, Joel T. Mague, James P. Donahue and Stephen Sproules
Chemical Communications 2015 - vol. 51(Issue 25) pp:NaN5485-5485
Publication Date(Web):2014/12/08
DOI:10.1039/C4CC09397F
The molecular and electronic structure of edge-sharing bioctahedral [N(n-Bu)4]3[Re2(mnt)5] is reported here. Despite the short intermetal bond length of 2.6654(2) Å with computed bond order of 1.2, the unpaired electron is localised by the asymmetric ligand distribution, as demonstrated by its remarkable EPR spectrum.
Co-reporter:Nicholas A. Spencer, Evert J. Ditzel, Justin S. J. Hargreaves and Stephen Sproules
Journal of Materials Chemistry A 2016 - vol. 4(Issue 18) pp:NaN7044-7044
Publication Date(Web):2016/03/23
DOI:10.1039/C6TA01053A
It is shown that control of the degree of coking can lead to the observation of hyperfine structures in the carbonaceous residues deposited from methanol over mordenite (H-MOR) at temperatures relevant to the conversion of methanol to hydrocarbons. EPR measurements of the catalyst samples at various times on stream have been recorded, with a rich hyperfine splitting pattern observed in the early stages of the reaction. Interpretation of the EPR data with the aid of density functional theoretical calculations has afforded the first definitive assignment of the radical cations formed in high temperature coke. The results detail a shortlist of six species: 2,3/2,6/2,7-dimethylnaphthalenium, 2,3,6-trimethylnaphthalenium, 2,3,6,7-tetramethylnaphthalenium, and anthracenium radical cations whose proton hyperfine splitting profiles match the experimental spectra; 2,3,6,7-tetramethylnaphthalenium showed the best agreement. The observation of these particular isomers of polymethylnaphthalene suggest the formation of more highly branched polyaromatic species is less likely within the confines of the H-MOR 12-membered ring channel. These radicals formed when the catalyst is active may constitute key intermediates in the conversion of methanol to light olefins.
Co-reporter:Jonathan J. Loughrey, Nathan J. Patmore, Amgalanbaatar Baldansuren, Alistair J. Fielding, Eric J. L. McInnes, Michaele J. Hardie, Stephen Sproules and Malcolm A. Halcrow
Chemical Science (2010-Present) 2015 - vol. 6(Issue 12) pp:NaN6948-6948
Publication Date(Web):2015/08/20
DOI:10.1039/C5SC02776D
Three complexes of cyclotricatechylene (H6ctc), [{PtL}3(μ3-ctc)], have been synthesised: (L = 1,2-bis(diphenylphosphino)benzene {dppb}, 1; L = 1,2-bis(diphenylphosphino)ethane {dppe}, 2; L = 4,4′-bis(tert-butyl)-2,2′-bipyridyl {tBu2bipy}, 3). The complexes show three low-potential, chemically reversible voltammetric oxidations separated by ca. 180 mV, corresponding to stepwise oxidation of the [ctc]6− catecholato rings to the semiquinonate level. The redox series [1]0/1+/2+/3+ and [3]0/1+/2+/3+ have been characterised by UV/vis/NIR spectroelectrochemistry. The mono- and di-cations have class II mixed valent character, with reduced radical delocalisation compared to an analogous bis-dioxolene system. The SOMO composition of [1˙]+ and [3˙]+ has been delineated by cw EPR, ENDOR and HYSCORE spectroscopies, with the aid of two monometallic model compounds [PtL(DBsq˙)]+ (DBsqH = 3,5-bis(tert-butyl)-1,2-benzosemiquinone; L = dppe or tBu2bipy). DF and time-dependent DF calculations confirm these interpretations, and demonstrate changes to spin-delocalisation in the ctc macrocycle as it is sequentially oxidised.