Ryoji Noyori

Find an error

Name:
Organization: Nagoya University , Japan
Department: Department of Chemistry and Research Center for Materials Science
Title: Professor(PhD)
Co-reporter:Ryoji Noyori;Joe P. Richmond
Advanced Synthesis & Catalysis 2013 Volume 355( Issue 1) pp:3-9
Publication Date(Web):
DOI:10.1002/adsc.201201128

Abstract

In recent years the incidence of scientific misconduct has increased. While the direct responsibility lies with the individual researcher, the educational role of mentors and research institutions needs rethinking and renewal. Researchers, principal investigators, departments, institutions, funding agencies, chemical societies, publishers, scientific journal editors, referees and editorial board members all have responsibilities in order to maintain the integrity of chemistry within the scientific community and to restore the confidence of the general public in chemistry as a responsible contributor to the solutions of the global problems facing mankind in this century.

Co-reporter:Dr. Ryoji Noyori
Angewandte Chemie International Edition 2013 Volume 52( Issue 1) pp:79-92
Publication Date(Web):
DOI:10.1002/anie.201205537

Abstract

As Louis Pasteur said, “Chance favors only a prepared mind.” Serendipitous events reorienting the pathway of science often occur through the actions of dedicated individuals with unique cultural and educational backgrounds, an original sense of values, and firm principles. Science is the fountainhead of human knowledge and possesses an indispensable cultural value. Science-based technologies and the innovations derived from them are the foundation of the civilized society in which we live today. All scientific endeavors begin with observations, or facts. However, the real goal of research activity is to convert accumulated knowledge to something with new technological, economic, or social value. Innovation is an essential aspect to assure the continued survival of humanity. And often, as my half-century of research reflects, the act of turning facts into values is facilitated by dialogue. Thus, to acquire the necessary combined wisdom, scientists must have ongoing conversations with the societies they serve, as well as with their counterparts in other nations.

Co-reporter:Takeshi Ohkuma;Yoshiki Yamaguchi;Christian A. Soval;Koichi Kato
Magnetic Resonance in Chemistry 2006 Volume 44(Issue 1) pp:66-75
Publication Date(Web):2 DEC 2005
DOI:10.1002/mrc.1728

The solution structures of a number of trans-RuH(η1-BH4)[(S)-tolbinap](1,2-diamine) precatalysts [TolBINAP = 2,2′-bis(di-4-tolylphosphino)-1,1′-binaphthyl; 1,2-diamine(S,S)- or (R,R)-1,2-diphenylethylenediamine (DPEN), ethylenediamine (EN), and (S)-1,1-di(4-anisyl)-2-isopropylethylenediamine (DAIPEN)] have been determined using 2D NMR (1H1H DQF-COSY, 1H13C HMQC, 1H31P HSQC, and 1H15N HSQC), and a double-pulsed field-gradient spin-echo (DPFGSE) NOE technique. All the octahedral Ru complexes adopt a trans configuration with respect to the BH4 and hydride ligands. Amine protons of trans-RuH(η1-BH4)[(S)-tolbinap](1,2-diamine) complexes undergo H/D exchange in (CD3)2CDOD. This inherent high acidity, coupled with the lability and chemical properties of the BH4 ligand, allows for precatalyst activation without the need for an added base, in contrast to trans-RuCl2[(S)-tolbinap](1,2-diamine) precatalysts, which require a strong base for generation of a catalytic species. The H/BH4 complex in a 2-propanol solution is converted to catalytically active [trans-RuH{(S)-tolbinap}{(S,S)-dpen}(ROH)]+ [(RO)(ROH)n] (R = (CH3)2CH), a loosely associated ion pair of the discrete (solvated) cationic fragment and anionic species. Copyright © 2006 John Wiley & Sons, Ltd.

Co-reporter:Ryoji Noyori  Dr.
Chemistry – An Asian Journal 2006 Volume 1(Issue 1-2) pp:
Publication Date(Web):3 JUL 2006
DOI:10.1002/asia.200600161
Co-reporter:Christian A. Soval  Dr.;Takeshi Ohkuma  Dr.;Noriyuki Utsumi;Kunihiko Tsutsumi;Kunihiko Murata Dr.  Dr.
Chemistry – An Asian Journal 2006 Volume 1(Issue 1-2) pp:
Publication Date(Web):3 JUL 2006
DOI:10.1002/asia.200600098

Chiral arene–N-tosylethylenediamine–RuII complexes can be made to effect both asymmetric transfer hydrogenation and asymmetric hydrogenation of simple ketones through a slight functional modification and by switching reaction conditions. [Ru(OSO2CF3){(S,S)-TsNCH(C6H5)CH(C6H5)NH2}(η6-p-cymene)] catalyzes the asymmetric hydrogenation of acetophenone in methanol to afford (S)-1-phenylethanol with 96 % ee in 100 % yield. Like the transfer hydrogenation catalyzed by similar Ru catalysts with basic 2-propanol or a formic acid/triethylamine mixture, this hydrogenation proceeds through a metal–ligand bifunctional mechanism. The reduction of the CO function occurs via an intermediary 18e RuH species in its outer coordination sphere without metal–substrate interaction. The high catalytic efficiency relies on the facile ionization of the Ru triflate complex in methanol. The turnover rate is dependent on hydrogen pressure and medium acidity and basicity. The RuCl analogue can be used as a precatalyst, albeit less effectively. Unlike the well-known diphosphine–1,2-diamine–RuII-catalyzed hydrogenation that proceeds in a basic alcohol, this reaction takes place under slightly acidic conditions, creating new opportunities for asymmetric hydrogenation.

Co-reporter:Masato Kitamura;Takeshi Ohkuma
PNAS 2004 Volume 101 (Issue 15 ) pp:5356-5362
Publication Date(Web):2004-04-13
DOI:10.1073/pnas.0307928100
Asymmetric hydrogenation uses inexpensive, clean hydrogen gas and a very small amount of a chiral molecular catalyst, providing the most powerful way to produce a wide array of enantio-enriched compounds in a large quantity without forming any waste. The recent revolutionary advances in this field have entirely changed the synthetic approach to producing performance chemicals that require a high degree of structural precision. The means of developing efficient asymmetric hydrogenations is discussed from a mechanistic point of view.
Co-reporter:Ryoji Noyori, Masao Aoki and Kazuhiko Sato  
Chemical Communications 2003 (Issue 16) pp:1977-1986
Publication Date(Web):30 Jun 2003
DOI:10.1039/B303160H
Aqueous H2O2 is an ideal oxidant, when coupled with a tungstate complex and a quaternary ammonium hydrogensulfate as an acidic phase-transfer catalyst. It oxidizes alcohols, olefins, and sulfides under organic solvent- and halide-free conditions in an economically, technically, and environmentally satisfying manner.
Co-reporter:Ryoji Noyori
Advanced Synthesis & Catalysis 2003 Volume 345(Issue 1-2) pp:
Publication Date(Web):21 JAN 2003
DOI:10.1002/adsc.200390002

Asymmetric catalysis, in its infancy in the 1960s, has dramatically changed the procedures of chemical synthesis, and resulted in an impressive progression to a level that technically approximates or sometimes even exceeds that of natural biological processes. The recent exceptional advances in this area attest to a range of conceptual breakthroughs in chemical sciences in general, and to the practical benefits of organic synthesis, not only in laboratories but also in industry. The growth of this core technology has given rise to enormous economic potential in the manufacture of pharmaceuticals, animal health products, agrochemicals, fungicides, pheromones, flavors, and fragrances. Practical asymmetric catalysis is of growing importance to a sustainable modern society, in which environmental protection is of increasing concern. This subject is an essential component of molecular science and technology in the 21st century. Most importantly, recent progress has spurred various interdisciplinary research efforts directed toward the creation of molecularly engineered novel functions. The origin and progress of my research in this field are discussed.

Co-reporter:Ryoji Noyori Dr.
Angewandte Chemie 2002 Volume 114(Issue 12) pp:
Publication Date(Web):13 JUN 2002
DOI:10.1002/1521-3757(20020617)114:12<2108::AID-ANGE2108>3.0.CO;2-Z

Die asymmetrische Katalyse hat seit ihren Anfängen in den 60er Jahren des vorigen Jahrhunderts die Arbeitsweisen in der chemischen Synthese drastisch verändert und zu einem eindrucksvollen Niveau geführt, das dem natürlicher biologischer Prozesse nahe kommt oder es gar übertrifft. Die jüngsten herausragenden Fortschritte auf diesem Gebiet sind Ausdruck einer Reihe konzeptioneller Durchbrüche in der Chemie allgemein und beim praktischen Nutzen der organischen Synthese nicht nur im Laboratorium, sondern auch in der Industrie. Die asymmetrische Katalyse brachte ein enormes ökonomisches Potential für die Fertigung von Pharmazeutika, Gesundheitsprodukten für Tiere, Agrarchemikalien, Fungiziden, Pheromonen sowie Duft- und Aromastoffen hervor. Sie erlangte auch eine wachsende Bedeutung für eine nachhaltig orientierte moderne Gesellschaft, für die der Schutz der Umwelt ein immer wichtigeres Anliegen ist. Die Forschung auf diesem Gebiet macht einen wesentlichen Teil der molekularen Wissenschaft und Technologie im 21. Jahrhundert aus. Der wohl wichtigste Aspekt ist, dass die jüngsten Fortschritte den Ansporn zu einer Vielzahl interdisziplinärer Forschungsarbeiten gaben, die auf die Schaffung neuartiger Funktionen durch molekulares Design abzielen. Die Entwicklung und die Fortschritte meiner Forschungstätigkeit auf diesem Gebiet sollen hier vorgestellt werden.

Co-reporter:Ryoji Noyori Dr.
Angewandte Chemie International Edition 2002 Volume 41(Issue 12) pp:
Publication Date(Web):12 JUN 2002
DOI:10.1002/1521-3773(20020617)41:12<2008::AID-ANIE2008>3.0.CO;2-4

Asymmetric catalysis, in its infancy in the 1960s, has dramatically changed the procedures of chemical synthesis, and resulted in an impressive progression to a level that technically approximates or sometimes even exceeds that of natural biological processes. The recent exceptional advances in this area attest to a range of conceptual breakthroughs in chemical sciences in general, and to the practical benefits of organic synthesis, not only in laboratories but also in industry. The growth of this core technology has given rise to enormous economic potential in the manufacture of pharmaceuticals, animal health products, agrochemicals, fungicides, pheromones, flavors, and fragrances. Practical asymmetric catalysis is of growing importance to a sustainable modern society, in which environmental protection is of increasing concern. This subject is an essential component of molecular science and technology in the 21st century. Most importantly, recent progress has spurred various interdisciplinary research efforts directed toward the creation of molecularly engineered novel functions. The origin and progress of my research in this field are discussed.

Co-reporter:Takeshi Ohkuma;Hiroshi Takeno;Yuji Honda
Advanced Synthesis & Catalysis 2001 Volume 343(Issue 4) pp:
Publication Date(Web):8 JUN 2001
DOI:10.1002/1615-4169(20010430)343:4<369::AID-ADSC369>3.0.CO;2-3

The BINAP/1,2-diphenylethylenediamine RuCl2 complexes bound to a polystyrene resin act as precatalysts for asymmetric hydrogenation of various simple ketones. The enantioselectivity, turnover number, and turnover frequency are comparable to those attained under homogeneous conditions.

Co-reporter:Ryoji Noyori;Seiji Suga;Hiromasa Oka;Masato Kitamura
The Chemical Record 2001 Volume 1(Issue 2) pp:
Publication Date(Web):22 MAR 2001
DOI:10.1002/tcr.1

Asymmetric addition of dialkylzincs to aldehydes in the presence of (2S)-3-exo-(dimethylamino)isoborneol [(S)-DAIB] exhibits various nonclassical phenomena. The enantiomeric excess (ee) of the alkylation product, obtained with partially resolved DAIB, is much higher than that of the chiral amino alcohol, while the rate decreases considerably as the ee of DAIB is lowered. The asymmetric amplification effects reflect the relative turnover numbers of two enantiomorphic catalytic cycles, where an essential feature is the reversible homochiral and heterochiral dimerization of the coexisting enantiomeric DAIB-based Zn catalysts. The interplay between the thermodynamics of the monomer/dimer equilibration and the kinetics of alkylation reaction strongly affect the overall profile of asymmetric catalysis. The self and nonself recognition of the chiral Zn catalysts is a general phenomenon when (S)-DAIB is mixed with its enantiomer, diastereomer, or even an achiral β-amino alcohol. The degree of nonlinearity is highly affected not only by the structures and purity of catalysts but also by various reaction parameters. The salient features have been clarified on the basis of molecular weight measurements, NMR and X-ray crystallographic studies of organozinc complexes, and kinetic experiments, as well as computer-aided quantitative analysis. © 2001 John Wiley & Sons, Inc. and The Japan Chemical Journal Forum Chem Rec 1:85–100, 2001

Co-reporter:Masashi Yamakawa ;Issaku Yamada Dr. Dr.
Angewandte Chemie International Edition 2001 Volume 40(Issue 15) pp:
Publication Date(Web):2 AUG 2001
DOI:10.1002/1521-3773(20010803)40:15<2818::AID-ANIE2818>3.0.CO;2-Y

The through-space CH/π attraction between the η6-arene ligand on Ru and the carbonyl aryl substituent (see transition states in picture) plays a key role in the enantioselective transfer hydrogenation of aromatic carbonyl compounds with 2-propanol or formic acid, catalyzed by chiral η6-arene–RuII complexes.

Co-reporter:Masashi Yamakawa ;Issaku Yamada Dr. Dr.
Angewandte Chemie 2001 Volume 113(Issue 15) pp:
Publication Date(Web):3 AUG 2001
DOI:10.1002/1521-3757(20010803)113:15<2900::AID-ANGE2900>3.0.CO;2-8

Die CH/π-Wechselwirkung durch den Raum zwischen dem η6-gebundenen Arenliganden am Ru-Zentrum und dem Carbonylsubstituenten (siehe Übergangszustände im Bild) ist entscheidend für die enantioselektive Transferhydrierung aromatischer Carbonylverbindungen mit 2-Propanol oder Ameisensäure, die durch chirale η6-Aren-RuII-Komplexe katalysiert wird.

Co-reporter:Ryoji Noyori Dr.;Takeshi Ohkuma Dr.
Angewandte Chemie 2001 Volume 113(Issue 1) pp:
Publication Date(Web):4 JAN 2001
DOI:10.1002/1521-3757(20010105)113:1<40::AID-ANGE40>3.0.CO;2-K

Die Hydrierung ist eines der Schlüsselverfahren der chemischen Synthese. Hohe Reaktionsgeschwindigkeiten und Selektivitäten sind hierbei lediglich durch die Kombination von strukturell definierten Katalysatoren mit geeigneten Reaktionsbedingungen zu erreichen. Für die homogene Hydrierung von nichtfunktionalisierten Ketonen, die keinerlei zur Koordination an das Metallzentrum befähigte funktionelle Gruppen aufweisen, haben sich die von uns beschriebenen Rutheniumkomplexe der allgemeinen Formel [RuCl2(phosphan)2(1,2-diamin)] als exzellente Katalysatorvorläufer erwiesen. In 2-Propanol und in Gegenwart einer alkalischen Base zeigt das auf diesen Komplexen basierende Katalysatorsystem eine starke Präferenz für die Reduktion von C=O- gegenüber C=C-Bindungen. Zahlreiche weitere Substituenten und funktionelle Gruppen, z. B. F, Cl, Br, I, CF3, OCH3, OCH2C6H5, COOCH(CH3)2, NO2, NH2 und NRCOR, werden ebenso toleriert wie eine ganze Reihe elektronenreicher wie -armer Heterocyclen. Darüber hinaus kann die Stereoselektivität im Produkt leicht sowohl durch die sterischen (Raumanspruch und Chiralität) und elektronischen Eigenschaften der verwendeten Liganden als auch durch die Reaktionsbedingungen gesteuert werden. Die katalytischen Hydrierungen von cyclischen wie offenkettigen Ketonen mit den Triphenylphosphan/Ethylendiamin-Standardkomplexen können hinsichtlich der Diastereoselektivität im Produkt problemlos mit den konventionellen Verfahren der Reduktion durch Hydride konkurrieren. Bei Verwendung geeigneter chiraler Diphosphane, insbesondere BINAP-Verbindungen, gelingt eine schnelle, produktive und stereoselektive Hydrierung einer ganzen Anzahl von aromatischen und heteroaromatischen Ketonen, wobei durchgängig hohe Enantioselektivitäten erzielt werden. Des Weiteren können auch gewisse Amino- und Alkoxyketone als Substrate eingesetzt werden, und eine Reihe cyclischer und acyclischer α,β-ungesättigter Ketone kann mit hoher Enantioselektivität in die entsprechenden Allylalkohole überführt werden. Die Hydrierung von konfigurationslabilen Ketonen schließlich ermöglicht die dynamische kinetische Racematspaltung von Diastereomeren, Epimeren und Enantiomeren. Unser neues Verfahren ist somit im Hinblick auf die Synthese einer ganzen Bandbreite von chiralen Alkoholen äußerst erfolgversprechend, zumal es in der asymmetrischen Synthese einiger biologisch relevanter Verbindungen bereits erfolgreich eingesetzt wurde. Die hohe Reaktionsgeschwindigkeit und die ausgezeichnete Carbonylselektivität begründen sich in einer nichtklassischen Katalyse mit Metall/Ligand-Difunktionalität, an der ein Aminorutheniumhydrid mit 18 Elektronen und ein Amidorutheniumhydrid mit 16 Elektronen beteiligt sind.

Co-reporter:Koichi Mikami;Toshinobu Korenaga;Masahiro Terada;Takeshi Ohkuma;Trang Pham
Angewandte Chemie 1999 Volume 111(Issue 4) pp:
Publication Date(Web):12 MAR 1999
DOI:10.1002/(SICI)1521-3757(19990215)111:4<517::AID-ANGE517>3.0.CO;2-E

Die Inversion eines BIPHEP/RuCl2/Diamin-Komplexes (im Bild schematisch gezeigt) wird durch die Konformationsflexibilität der BIPHEP-Liganden ermöglicht. Die Folge ist eine asymmetrische Aktivierung in der Ru-katalysierten Hydrierung von Carbonylverbindungen zu optisch aktiven Alkoholen. Während ein racemischer BINAP/RuCl2-Komplex mit einem chiralen Diamin als Aktivator ein 1:1-Diastereomerengemisch liefert, erhält man mit einem BIPHEP/RuCl2-Komplex und einem chiralen Diamin die Diastereomere in ungleichen Mengen. Ar = 3,5-Dimethylphenyl; BINAP = 2,2′-Bis(diphenylphosphanyl)-1,1′-binaphthyl; BIPHEP = 2,2′-Bis(diarylphosphanyl)biphenyl.

Co-reporter:Koichi Mikami;Toshinobu Korenaga;Masahiro Terada;Takeshi Ohkuma;Trang Pham
Angewandte Chemie International Edition 1999 Volume 38(Issue 4) pp:
Publication Date(Web):24 FEB 1999
DOI:10.1002/(SICI)1521-3773(19990215)38:4<495::AID-ANIE495>3.0.CO;2-O

Stereomutation of a BIPHEP/RuCl2/diamine complex (shown schematically) is possible because of the conformational flexibilty of BIPHEP ligands. The result is an asymmetric activation in the Ru-catalyzed hydrogenation of carbonyl compounds to optically active alcohols. Whereas a racemic BINAP/RuCl2 complex with a chiral diamine activator gives a 1:1 mixture of two diastereomers, unequal amounts of the diastereomers can be produced from a BIPHEP/RuCl2 complex and a chiral diamine. Ar=3,5-dimethylphenyl, BINAP=2,2′-bis(diphenylphosphanyl)-1,1′-binaphthyl, BIPHEP=2,2′-bis(diarylphosphanyl)biphenyl.

Co-reporter: Dr. Masaaki Suzuki;Hisashi Doi;Margareta Björkman;Dr. Yvonne Andersson; Dr. Bengt Långström;Dr. Yasuyoshi Watanabe;Dr. Ryoji Noyori
Chemistry - A European Journal 1997 Volume 3(Issue 12) pp:
Publication Date(Web):20 JAN 2006
DOI:10.1002/chem.19970031219

The reaction of methyl iodide and (excess) aryltributylstannane to give a methylarene has been studied with the focus on the realization of rapid coupling for incorporation of short-lived radionuclides into bioactive organic compounds. The coupling of methyl iodide with tributylphenylstannane (40 equiv) is accomplished in >90% yield within 5 min at 60°C with a tri-o-tolylphosphine-bound, coordinatively unsaturated Pd0 complex together with a CuI salt and K2CO3 in DMF. This protocol is applicable to a variety of homo- and heteroaromatic tin compounds, to give the corresponding methylated derivatives. The effects of the tri-o-tolylphosphine ligand, a Cu(I) salt, and DMF are discussed. This new protocol provides a firm chemical basis for the synthesis of 11CH3-incorporated PET tracers.

2-Hexanone, 6-(benzoyloxy)-
1-ETHYNYL-4-IODOBENZENE
NONANE-2,8-DIONE
MESO-TETRAKIS(P-SULFOPHENYL)PORPHINE TETRASODIUM SALT
ETHYL 1-BENZYL-6-OXO-3-PIPERIDINECARBOXYLATE
t-Butyldimethyl(undec-10-ynyloxy)silane
Silane, (1,1-dimethylethyl)(5-hexynyloxy)diphenyl-
5-Hexyn-1-ol, benzoate
2-(4-Ethynyl-phenyl)-4,4,5,5-tetramethyl-[1,3,2]dioxaborolane