Kouya Yamaki

Find an error

Name:
Organization: Kobe Pharmaceutical University , Japan
Department:
Title: Lecture(PhD)
Co-reporter:Kouya Yamaki;Takayuki Nakashima;Kenji Miyatake;Yuki Ishibashi
Immunologic Research 2014 Volume 58( Issue 1) pp:106-117
Publication Date(Web):2014 January
DOI:10.1007/s12026-013-8478-8
Administration of the influenza vaccination to patients with an egg allergy is major health concern. Contaminating egg antigens occasionally induce severe anaphylactic shock in these patients following administration of the vaccination; therefore, the development of a safer vaccination is needed. In the present study, we investigated whether a mixture of four newly and previously generated anti-ovalbumin (OVA) IgA monoclonal antibodies (mAbs) could inhibit both anaphylactic shock upon a subcutaneous OVA challenge and subsequent further sensitization against OVA in passively anti-OVA IgE-sensitized mice and actively sensitized mice with an injection of OVA. The prevention of anaphylaxis by anti-OVA IgA mAbs was suggested to be mediated through the inhibition of OVA binding to allergenic antibodies such as anti-OVA IgE on mast cells and deceleration of the rate of OVA penetration from the injected site into the systemic circulation. Anti-OVA IgA mAbs inhibited further sensitization against OVA in mice actively sensitized with OVA, but did not affect sensitization against the unrelated antigen, phosphorylcholine-keyhole limpet hemocyanin co-injected with OVA. Our findings indicate that adding the anti-egg antigen IgA to the influenza vaccine should reduce not only the risk of inducing anaphylactic shock, but also undesired further sensitization against egg antigens following the vaccination without affecting the intended beneficial effect of the vaccine, namely the upregulation of immune responses to influenza viruses.
Co-reporter:Kouya Yamaki;Shin Yoshino
BioMetals 2009 Volume 22( Issue 6) pp:
Publication Date(Web):2009 December
DOI:10.1007/s10534-009-9254-z
The effects of ultrafine and fine particles of zinc oxide (ZnO) on IgE-dependent mast cell activation were investigated. The rat mast cell line RBL2H3 sensitized with monoclonal anti-ovalbumin (OVA) IgE was challenged with OVA in the presence or absence of ZnO particles and zinc sulfate (ZnSO4). Degranulation of RBL2H3 was examined by the release of β-hexosaminidase. To understand the mechanisms responsible for regulating mast cell functions, the effects of ZnO particles on the levels of intracellular Zn2+, Ca2+, phosphorylated-Akt, and global tyrosine phosphorylation were also measured. IgE-induced release of β-hexosaminidase was obviously attenuated by ultrafine ZnO particles and ZnSO4, whereas it was very weakly inhibited by fine ZnO particles. The intracellular Zn2+ concentration was higher in the cells incubated with ultrafine ZnO particles than in those with fine ZnO particles. Consistent with inhibitory effect on release of β-hexosaminidase, ultrafine ZnO particles and ZnSO4, but not fine ZnO particle, strongly attenuated the IgE-mediated increase of phosphorylated-Akt and tyrosine phosphorylations of 100 and 70 kDa proteins in RBL2H3 cells. These findings indicate that ultrafine ZnO particles, with a small diameter and a large total surface area/mass, could release Zn2+ easily and increase intracellular Zn2+ concentration efficiently, thus decreasing FcεRI-mediated mast cell degranulation through inhibitions of PI3K and protein tyrosine kinase activation. Exposure to ZnO particles might affect immune responses, especially in allergic diseases.
Co-reporter:Kouya Yamaki, Shin Yoshino
Journal of Immunological Methods (January 2016) Volume 428() pp:58-68
Publication Date(Web):1 January 2016
DOI:10.1016/j.jim.2015.11.010
•A new, rapid method to test IgE-dependent allergic responses in mice was established.•An injection of immune complex induced its distinctive spotted distribution in skin.•This phenomenon was induced and evaluated by in vivo imaging within 15 min.•The phenomenon caused by IgE immune complex was anaphylaxis- and mast cell-dependent.•This method has advantages in screening of anti-allergic drug and other formulations.We herein established a new method to evaluate allergic responses in mice rapidly and easily with ethical improvement by reducing the number of animals used. A single intravenous injection of a mixture of anti-OVA monoclonal IgE and fluorescein-ovalbumin (FITC-OVA) induced the distinctive spotted distribution of FITC-OVA in skin, named “ASDIS (Anaphylaxis-dependent Spotted Distribution of a fluorescent-labeled Immune complex in Skin)”, and this was easily detected by in vivo imaging. The parallel induction of hypothermia, scratching, serum histamine increases, and ASDIS as well as the inhibition of ASDIS by either the systemic administration of a histamine H1 receptor antagonist or mast cell-depleting antibody suggested that our method, which only required 15 min, induced these allergic responses including ASDIS. Relatively mild but significant ASDIS was induced also in mice with passive systemic anaphylaxis by the method, requiring 2 separate days. The painting of anti-histamines on the skin markedly reduced ASDIS in the painted area only, suggesting the potential of this model to simultaneously compare the anti-allergic effects of several candidate compounds with control drugs in the same mice. ASDIS was suggested to originate from extravasated FITC-OVA/OE-1 immune complexes from blood to skin tissues other than mast cells. Our new method has the advantages of rapidity, easy method, and lower animal numbers to evaluate anti-allergic compounds as well as the characteristics of the used antibody, antigen, labeling molecules, additives, and other formulations. Our model for inducing ASDIS may contribute to the development of anti-allergic drugs, especially those intended for application to the skin.Download full-size image
Co-reporter:Kouya Yamaki, Shin Yoshino
International Immunopharmacology (February 2014) Volume 18(Issue 2) pp:217-224
Publication Date(Web):1 February 2014
DOI:10.1016/j.intimp.2013.11.029
•JAK inhibitor ruxolitinib remitted food allergy in mice.•The mechanism relies on immunosuppression and prevention of mast cell activation and hyperplasia.•Important roles of JAK in the development of food allergy were proposed.•JAK inhibition is a promising strategy for the prevention of food allergy.To clarify the role of Janus kinase (JAK) in and the efficacy of JAK inhibitors on food allergy, we investigated the effect of the clinically available JAK inhibitor ruxolitinib on mouse food allergy and the functions of cultured mast cells in vitro. Anaphylactic symptoms including diarrhea and decreases in body temperature pursuant to oral ovalbumin (OVA) challenges in food allergy mice were attenuated by the daily oral administration of ruxolitinib. This drug inhibited increases in mouse mast cell protease-1 concentrations in the serum and mast cell numbers in the intestines of these mice as well as degranulation, IL-13 production, and the spontaneous and IL-9-dependent survival of mouse bone marrow-derived mast cells in spite of the absence of an effect of ruxolitinib on passive systemic anaphylaxis. Anti-OVA IgG2a, IgE, and IgG1 serum levels and the release of IFN-γ, IL-4, IL-9, and IL-10 from the OVA-restimulated splenocytes of food allergy mice were also decreased by the treatment. Moreover, ruxolitinib administration to mice that had already exhibited anaphylactic responses to previous challenges reduced anaphylactic responses to further oral OVA challenges, which suggested that ruxolitinib has a therapeutic potential on food allergy. Our results showed that ruxolitinib remitted food allergy in mice mainly through immunosuppression and the prevention of mast cell hyperplasia, and partially through the inhibition of mast cell activation. We consider JAK inhibition to be a promising strategy for the prevention of food allergy, and ruxolitinib along with its derivatives inhibiting JAK as good candidates for therapeutic drugs to treat food allergy.
Immunoglobulin E
β-Cyclopentyl-4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-(βR)-1H-pyrazole-1-propanenitrile
4-(5H-Dibenzo[a,d][7]annulen-5-ylidene)-1-methylpiperidine