Stéphane Petoud

Find an error

Name: Stéphane Petoud
Organization: Centre de Biophysique Moléculaire
Department: Department of Chemistry, Willard H. Dow Laboratories
Title:
Co-reporter:Ivana Martinić, Svetlana V. Eliseeva, Tu N. Nguyen, Vincent L. Pecoraro, and Stéphane Petoud
Journal of the American Chemical Society June 28, 2017 Volume 139(Issue 25) pp:8388-8388
Publication Date(Web):June 14, 2017
DOI:10.1021/jacs.7b01587
Sensitive detection of cell necrosis is crucial for the determination of cell viability. Because of its high resolution at the cellular level and sensitivity, optical imaging is highly attractive for identifying cell necrosis. However, challenges associated with this technique remain present such as the rapid photobleaching of several types of organic fluorophores and/or the interference generated by biological autofluorescence. Herein, we synthesized novel biologically compatible Zn2+/Ln3+ metallacrowns (MCs) that possess attractive near-infrared (NIR) emission and are highly photostable. In addition, these MCs have the ability to label differentially necrotic HeLa cells from living cells. This work is also the first demonstration of (i) the use of the NIR emission arising from a single lanthanide(III) cation for optical biological imaging of cells under single photon excitation, (ii) the first example of a lanthanide(III)-based NIR-emitting probe that can be targeted to a specific type of cell.
Co-reporter:Ivana Martinić;Svetlana V. Eliseeva;Tu N. Nguyen;Frédéric Foucher;David Gosset;Frances Westall;Vincent L. Pecoraro
Chemical Science (2010-Present) 2017 vol. 8(Issue 9) pp:6042-6050
Publication Date(Web):2017/08/21
DOI:10.1039/C7SC01872J
Cell fixation is an essential approach for preserving cell morphology, allowing the targeting and labelling of biomolecules with fluorescent probes. One of the key requirements for more efficient fluorescent labelling is the preservation of cell morphology, which usually requires a combination of several fixation techniques. In addition, the use of a counter stain is often essential to improve the contrast of the fluorescent probes. Current agents possess significant limitations, such as low resistance toward photobleaching and sensitivity to changes in the microenvironment. Luminescent Ln3+ ‘encapsulated sandwich’ metallacrowns (MCs) overcome these drawbacks and offer complementary advantages. In particular, they emit sharp emission bands, possess a large difference between excitation and emission wavelengths and do not photobleach. Herein, MCs formed with pyrazinehydroxamic acid (Ln3+[Zn(II)MCpyzHA], Ln3+ = Yb, Nd) were used, combined with near-infrared (NIR) counter staining and fixation agents for HeLa cells upon an initial five minute exposure to UV-A light. The validity and quality of the cell fixation were assessed with Raman spectroscopy. Analysis of the NIR luminescence properties of these MCs was performed under different experimental conditions, including in a suspension of stained cells. Moreover, the high emission intensity of Ln3+[Zn(II)MCpyzHA] in the NIR region allows these MCs to be used for imaging with standard CCD cameras installed on routine fluorescence microscopes. Finally, the NIR-emitting Ln3+[Zn(II)MCpyzHA] compounds combine, within a single molecule, features such as cell fixation and staining abilities, good photostability and minimal sensitivity of the emission bands to the local microenvironment, and they are highly promising for establishing the next generation of imaging agents with a single biodistribution.
Co-reporter:Jiefang He; Célia S. Bonnet; Svetlana V. Eliseeva; Sara Lacerda; Thomas Chauvin; Pascal Retailleau; Frederic Szeremeta; Bernard Badet; Stéphane Petoud; Éva Tóth;Philippe Durand
Journal of the American Chemical Society 2016 Volume 138(Issue 9) pp:2913-2916
Publication Date(Web):January 4, 2016
DOI:10.1021/jacs.5b12084
We report first prototypes of responsive lanthanide(III) complexes that can be monitored independently in three complementary imaging modalities. Through the appropriate choice of lanthanide(III) cations, the same reactive ligand can be used to form complexes providing detection by (i) visible (Tb3+) and near-infrared (Yb3+) luminescence, (ii) PARACEST- (Tb3+, Yb3+), or (iii) T1-weighted (Gd3+) MRI. The use of lanthanide(III) ions of different natures for these imaging modalities induces only a minor change in the structure of complexes that are therefore expected to have a single biodistribution and cytotoxicity.
Co-reporter:Chun Y. Chow; Svetlana V. Eliseeva; Evan R. Trivedi; Tu N. Nguyen; Jeff W. Kampf; Stéphane Petoud;Vincent L. Pecoraro
Journal of the American Chemical Society 2016 Volume 138(Issue 15) pp:5100-5109
Publication Date(Web):March 25, 2016
DOI:10.1021/jacs.6b00984
Luminescent lanthanide(III)-based molecular scaffolds hold great promises for materials science and for biological applications. Their fascinating photophysical properties enable spectral discrimination of emission bands that range from the visible to the near-infrared (NIR) regions. In addition, their strong resistance to photobleaching makes them suitable for long duration or repeated biological experiments using a broad range of sources of excitation including intense and focalized systems such as lasers (e.g., confocal microscopy). A main challenge in the creation of luminescent lanthanide(III) complexes lies in the design of a ligand framework that combines two main features: (i) it must include a chromophoric moiety that possesses a large molar absorptivity and is able to sensitize several different lanthanide(III) ions emitting in the visible and/or in the near-infrared, and (ii) it must protect the Ln3+ cation by minimizing nonradiative deactivation pathways due to the presence of −OH, −NH and −CH vibrations. Herein, a new family of luminescent Ga3+/Ln3+ metallacrown (MC) complexes is reported. The MCs with the general composition [LnGa4(shi)4(C6H5CO2)4(C5H5N) (CH3OH)] (Ln-1, Ln = Sm3+–Yb3+) were synthesized in a one pot reaction using salicylhydroxamic acid (H3shi) with Ga3+ and Ln3+ nitrates as reagents. The molecular structure of [DyGa4(shi)4(C6H5CO2)4(C5H5N) (CH3OH)] was obtained by X-ray analysis of single crystals and shows that the complex is formed as a [12-MCGa(III)shi-4] core with four benzoate molecules bridging the central Dy3+ ion to the Ga3+ ring metals. The powder X-ray diffraction analysis demonstrates that all other isolated complexes are isostructural. The extended analysis of the luminescence properties of these complexes, excited by the electronic states of the chromophoric ligands, showed the presence of characteristic, sharp f–f transitions that can be generated not only in the NIR (Sm, Dy, Ho, Er, Yb) but also in the visible (Sm, Eu, Tb, Dy, Tm). All Ln-1 complexes possess very high quantum yield values with respect to other literature compounds, indicating a good sensitization efficiency of the [12-MCGa(III)shi-4] scaffold. Especially, as of today, the Yb-1 complex exhibits the highest NIR quantum yield reported for a lanthanide(III) complex containing C–H bonds with a value of 5.88(2)% in the solid state. This work is a significant step forward toward versatile, easily prepared luminescent lanthanide(III) complexes suitable for a variety of applications including highly in demand biological imaging, especially in the NIR domain.
Co-reporter:Svetlana V. Eliseeva, Iurii P. Golovach, Valerii S. Liasotskyi, Valery P. Antonovich, Stéphane Petoud, Svetlana B. Meshkova
Journal of Luminescence 2016 Volume 171() pp:191-197
Publication Date(Web):March 2016
DOI:10.1016/j.jlumin.2015.10.055
Most of the existing optical methods for CuII detection rely on a “turn-off” approach using visible lanthanide(III) luminescence. In this work we present an innovative molecular systems where the podands bis(2-hydrazinocarbonylphenyl) ethers of ethylene glycol (L1) and diethylene glycol (L2) have been designed, synthesised and tested with an ultimate goal to create a "turn-on" lanthanide(III)-based molecular probe for the specific detection of CuII ions based on both visible (TbIII, EuIII) and near-infrared (NdIII, YbIII) emission. Quantum yields of the characteristic LnIII emission signals increases by at least two-orders of magnitude upon addition of CuII into water/acetonitrile (9/1) solutions of LnL (L=L1, L2) complexes. A detailed investigation of ligand-centred photophysical properties of water/acetonitrile (9/1) solutions of CuL, GdL and GdCuL complexes revealed that the presence of CuII ions does not significantly affect the energy positions of the singlet (32,260 cm−1) and triplet (25,640–25,970 cm−1) states, but partially or fully eliminates the singlet state quenching through an electron transfer mechanism. This effect increases the probability of intersystem crossing leading to enhanced triplet-to-singlet emission ratio and to longer triplet state lifetimes. The redox activity of hydrazine moieties and their ability to reduce CuII to CuI has been indicated by a qualitative assay with neocuproine. Finally, the probe demonstrates a good selectivity towards CuII over other transition metal ions: the addition of divalent ZnII, CdII, PdII, NiII, CoII or trivalent FeIII, GaIII, InIII ion salts into solutions of TbL either does not affect emission intensity or increases it to a maximum of 2–3 times, while, under similar experimental conditions, the presence of CuII results in a 20- to 30-times lanthanide luminescence enhancement. This new strategy results in a versatile and selective optical platform for the design of efficient “turn-on” sensors for CuII ions based on visible and near-infrared LnIII luminescence.
Co-reporter:Davood Zare, Yan Suffren, Laure Guénée, Svetlana V. Eliseeva, Homayoun Nozary, Lilit Aboshyan-Sorgho, Stéphane Petoud, Andreas Hauser and Claude Piguet  
Dalton Transactions 2015 vol. 44(Issue 6) pp:2529-2540
Publication Date(Web):30 Oct 2014
DOI:10.1039/C4DT02336F
This work shows that the operation of near-infrared to visible light-upconversion in a discrete molecule is not limited to non-linear optical processes, but may result from superexcitation processes using linear optics. The design of nine-coordinate metallic sites made up of neutral N-heterocyclic donor atoms in kinetically inert dinuclear [GaEr(L1)3]6+ and trinuclear [GaErGa(L2)3]9+ helicates leads to [ErN9] chromophores displaying unprecedented dual visible nanosecond Er(4S3/2→4I15/2) and near-infrared microsecond Er(4I13/2→4I15/2) emissive components. Attempts to induce one ion excited-state absorption (ESA) upconversion upon near-infrared excitation of these complexes failed because of the too-faint Er-centred absorption cross sections. The replacement of the trivalent gallium cation with a photophysically-tailored pseudo-octahedral [CrN6] chromophore working as a sensitizer for trivalent erbium in [CrEr(L1)3]6+ improves the near-infrared excitation efficiency, leading to the observation of a weak energy transfer upconversion (ETU). The connection of a second sensitizer in [CrErCr(L2)3]9+ generates a novel mechanism for upconversion, in which the superexcitation process is based on the CrIII-sensitizers. Two successive Cr→Er energy transfer processes (concerted-ETU) compete with a standard Er-centred ETU, and a gain in upconverted luminescence by a factor larger than statistical values is predicted and observed.
Co-reporter:Evan R. Trivedi ; Svetlana V. Eliseeva ; Joseph Jankolovits ; Marilyn M. Olmstead ; Stéphane Petoud ;Vincent L. Pecoraro
Journal of the American Chemical Society 2014 Volume 136(Issue 4) pp:1526-1534
Publication Date(Web):January 10, 2014
DOI:10.1021/ja4113337
Near-infrared (NIR) luminescent lanthanide complexes hold great promise for practical applications, as their optical properties have several complementary advantages over organic fluorophores and semiconductor nanoparticles. The fundamental challenge for lanthanide luminescence is their sensitization through suitable chromophores. The use of the metallacrown (MC) motif is an innovative strategy to arrange several organic sensitizers at a well-controlled distance from a lanthanide cation. Herein we report a series of lanthanide “encapsulated sandwich” MC complexes of the form Ln3+[12-MCZn(II),quinHA-4]2[24-MCZn(II),quinHA-8] (Ln3+[Zn(II)MCquinHA]) in which the MC framework is formed by the self-assembly of Zn2+ ions and tetradentate chromophoric ligands based on quinaldichydroxamic acid (quinHA). A first-generation of luminescent MCs was presented previously but was limited due to excitation wavelengths in the UV. We report here that through the design of the chromophore of the MC assembly, we have significantly shifted the absorption wavelength toward lower energy (450 nm). In addition to this near-visible inter- and/or intraligand charge transfer absorption, Ln3+[Zn(II)MCquinHA] exhibits remarkably high quantum yields, long luminescence lifetimes (CD3OD; Yb3+, QLnL = 2.88(2)%, τobs = 150.7(2) μs; Nd3+, QLnL = 1.35(1)%, τobs = 4.11(3) μs; Er3+, QLnL = 3.60(6)·10–2%, τobs = 11.40(3) μs), and excellent photostability. Quantum yields of Nd3+ and Er3+ MCs in the solid state and in deuterated solvents, upon excitation at low energy, are the highest values among NIR-emitting lanthanide complexes containing C–H bonds. The versatility of the MC strategy allows modifications in the excitation wavelength and absorptivity through the appropriate design of the ligand sensitizer, providing a highly efficient platform with tunable properties.
Co-reporter:Dr. Alexra Foucault-Collet;Dr. Chad M. Shade;Iuliia Nazarenko;Dr. Stéphane Petoud;Dr. Svetlana V. Eliseeva
Angewandte Chemie 2014 Volume 126( Issue 11) pp:2971-2974
Publication Date(Web):
DOI:10.1002/ange.201311028

Abstract

We report herein the synthesis of a luminescent polynuclear dendritic structure (SmIII-G3P-2,3Nap) in which eight SmIII ions are sensitized by thirty-two 2,3-naphthalimide chromophores. Upon a single excitation wavelength, the dendrimer complex exhibits two types of emission in the visible and in the near-infrared (NIR) ranges. SmIII-G3P-2,3Nap was non-cytotoxic after 24 h of incubation and up to 2.5 μM. The ability of the SmIII-based probe to be taken up by cells was confirmed by confocal microscopy. Epifluorescence microscopy validated SmIII-G3P-2,3Nap as a versatile probe, capable of performing interchangeably in the visible or NIR for live-cell imaging. As both emissions are obtained from a single complex, the cytotoxicity and biodistribution are inherently the same. The possibility for discriminating the sharp SmIII signals from autofluorescence in two spectral ranges increases the reliability of analysis and reduces the probability of artifacts and instrumental errors.

Co-reporter:Dr. Alexra Foucault-Collet;Dr. Chad M. Shade;Iuliia Nazarenko;Dr. Stéphane Petoud;Dr. Svetlana V. Eliseeva
Angewandte Chemie International Edition 2014 Volume 53( Issue 11) pp:2927-2930
Publication Date(Web):
DOI:10.1002/anie.201311028

Abstract

We report herein the synthesis of a luminescent polynuclear dendritic structure (SmIII-G3P-2,3Nap) in which eight SmIII ions are sensitized by thirty-two 2,3-naphthalimide chromophores. Upon a single excitation wavelength, the dendrimer complex exhibits two types of emission in the visible and in the near-infrared (NIR) ranges. SmIII-G3P-2,3Nap was non-cytotoxic after 24 h of incubation and up to 2.5 μM. The ability of the SmIII-based probe to be taken up by cells was confirmed by confocal microscopy. Epifluorescence microscopy validated SmIII-G3P-2,3Nap as a versatile probe, capable of performing interchangeably in the visible or NIR for live-cell imaging. As both emissions are obtained from a single complex, the cytotoxicity and biodistribution are inherently the same. The possibility for discriminating the sharp SmIII signals from autofluorescence in two spectral ranges increases the reliability of analysis and reduces the probability of artifacts and instrumental errors.

Co-reporter:Dr. Alexra Foucault-Collet;Dr. Chad M. Shade;Iuliia Nazarenko;Dr. Stéphane Petoud;Dr. Svetlana V. Eliseeva
Angewandte Chemie 2014 Volume 126( Issue 11) pp:
Publication Date(Web):
DOI:10.1002/ange.201401089
Co-reporter:Dr. Alexra Foucault-Collet;Dr. Chad M. Shade;Iuliia Nazarenko;Dr. Stéphane Petoud;Dr. Svetlana V. Eliseeva
Angewandte Chemie International Edition 2014 Volume 53( Issue 11) pp:
Publication Date(Web):
DOI:10.1002/anie.201401089
Co-reporter:Davood Zare, Yan Suffren, Laure Guénée, Svetlana V. Eliseeva, Homayoun Nozary, Lilit Aboshyan-Sorgho, Stéphane Petoud, Andreas Hauser and Claude Piguet
Dalton Transactions 2015 - vol. 44(Issue 6) pp:NaN2540-2540
Publication Date(Web):2014/10/30
DOI:10.1039/C4DT02336F
This work shows that the operation of near-infrared to visible light-upconversion in a discrete molecule is not limited to non-linear optical processes, but may result from superexcitation processes using linear optics. The design of nine-coordinate metallic sites made up of neutral N-heterocyclic donor atoms in kinetically inert dinuclear [GaEr(L1)3]6+ and trinuclear [GaErGa(L2)3]9+ helicates leads to [ErN9] chromophores displaying unprecedented dual visible nanosecond Er(4S3/2→4I15/2) and near-infrared microsecond Er(4I13/2→4I15/2) emissive components. Attempts to induce one ion excited-state absorption (ESA) upconversion upon near-infrared excitation of these complexes failed because of the too-faint Er-centred absorption cross sections. The replacement of the trivalent gallium cation with a photophysically-tailored pseudo-octahedral [CrN6] chromophore working as a sensitizer for trivalent erbium in [CrEr(L1)3]6+ improves the near-infrared excitation efficiency, leading to the observation of a weak energy transfer upconversion (ETU). The connection of a second sensitizer in [CrErCr(L2)3]9+ generates a novel mechanism for upconversion, in which the superexcitation process is based on the CrIII-sensitizers. Two successive Cr→Er energy transfer processes (concerted-ETU) compete with a standard Er-centred ETU, and a gain in upconverted luminescence by a factor larger than statistical values is predicted and observed.
N-HYDROXYQUINOLINE-2-CARBOXAMIDE