Co-reporter:Hellen E. Dyer, Saskia Huijser, Andrew D. Schwarz, Chao Wang, Robbert Duchateau and Philip Mountford
Dalton Transactions 2008 (Issue 1) pp:32-35
Publication Date(Web):26 Oct 2007
DOI:10.1039/B714583G
The reaction of Sm{N(SiMe3)2}3 with the bis(phenol)amines H2O2NR (H2O2NR = RCH2CH2N(2-HO-3,5-C6H2tBu2)2; R = OMe, NMe2 or Me) gave exclusively zwitterions Sm(O2NR)(HO2NR). For R = OMe or NMe2 these were efficient catalysts for the ring-opening polymerisation of ε-caprolactone and D,L-lactide with a tendency to form cyclic esters; in contrast, no polymerisation was observed for R = Me.
Co-reporter:Stanislav K. Ignatov, Nicholas H. Rees, Alexei A. Merkoulov, Stuart R. Dubberley, Alexei G. Razuvaev, Philip Mountford and Georgii I. Nikonov
Organometallics 2008 Volume 27(Issue 22) pp:5968-5977
Publication Date(Web):October 15, 2008
DOI:10.1021/om800553y
Reactions of the imido complex Cp(ArN)Ta(PMe3)2 (1, Ar = 2,6-diisopropylphenyl) with silanes afford the silyl hydrides Cp(ArN)Ta(PMe3)(H)(SiRnCl3−n) (2b−e) and Cp(ArN)Ta(PMe3)(H)(SiPhMeH) (2a) as the first kinetic products. However, the hydride compounds Cp(ArN)Ta(PMe3)(H)(SiRnCl3−n) are metastable and, first, rearrange in the presence of phosphine to the chlorides Cp(ArN)Ta(PMe3)(Cl)(SiHRnCl2−n) (5) and then decompose to Cp(ArN)Ta(PMe3)(Cl)(H) (4) and eventually to Cp(ArN)Ta(PMe3)Cl2 (3). Complexes with a smaller Ar′ substituent at nitrogen (Ar′ = 2,6-dimethylphenyl) react faster, as do more Lewis acidic silanes. The occurrence of interligand hypervalent interactions in the tantalum complexes Cp(ArN)Ta(PMe3)(H)(SiRnCl3−n) has been revealed by X-ray structure analysis, DFT calculations, and the experimental determination of the sign of the coupling constant J(Si−H). The J(Si−H) was found to be negative for Cp(ArN)Ta(PMe3)(H)(SiMenCl3−n) (J(Si−H) = −40 Hz for n = 1; J(Si−H) = −50 Hz for n = 0), indicative of the presence of Si−H bonding, but positive for Cp(ArN)Ta(PMe3)(H)(SiMeHPh) (J(Si−H) = +14 Hz), suggesting the absence of direct Si−H interactions. A DFT study of the mechanism of silane coupling with the model imido complex Cp(MeN)Ta(PMe3)2 established the feasibility of the direct addition of silanes HSiMenCl3−n (n = 1−3) to the imido group to give the adduct Cp(MeN{→SiR3-H})Ta(PMe3)2, as previously found in the related niobium chemistry.
Co-reporter:Christopher M. Kozak Dr. Dr.
Angewandte Chemie 2004 Volume 116(Issue 10) pp:
Publication Date(Web):25 FEB 2004
DOI:10.1002/ange.200301712
Ein Riesensprung für die Koordinationschemie ist die Entdeckung der katalytischen Reduktion von Distickstoff an definierten Molybdänkomplexen durch Protonen und Elektronen (siehe Bild). Auch wird die Frage wieder aktuell, welche Rolle Molybdän im FeMo-Nitrogenase-Cofaktor spielt.
Co-reporter:Christopher M. Kozak Dr. Dr.
Angewandte Chemie International Edition 2004 Volume 43(Issue 10) pp:
Publication Date(Web):25 FEB 2004
DOI:10.1002/anie.200301712
A monumental achievement for coordination chemistry that also re-addresses the role of molybdenum in the nitrogenase FeMo cofactor is the discovery of the catalytic reduction of dinitrogen at a well-defined molybdenum complex by protons and electrons (see picture).
Co-reporter:Benjamin D. Ward, Eric Clot, Stuart R. Dubberley, Lutz H. Gade and Philip Mountford
Chemical Communications 2002 (Issue 22) pp:2618-2619
Publication Date(Web):16 Oct 2002
DOI:10.1039/B208327B
The imidotungsten dimethyl compound [W(N2Npy)(NPh)Me2] 2 reacts with BArF3 to form the cationic complex [W(N2Npy)(NPh)Me]+ 3+ [anion = [MeBArF3]−; ArF = C6F5; N2Npy = MeC(2-C5H4N)(CH2NSiMe3)2] which undergoes methyl group exchange with added 2, [Cp2ZrMe2] or ZnMe2; treatment of cation 3+ with CO2 or isocyanates leads to cycloaddition reactions at the WNPh bond and not insertion into the W–Me bond, despite the latter product being the most thermodynamically favourable according to DFT calculations.
Co-reporter:Aldo E. Guiducci, Andrew R. Cowley, Michael E. G. Skinner and Philip Mountford
Dalton Transactions 2001 (Issue 9) pp:1392-1394
Publication Date(Web):12 Apr 2001
DOI:10.1039/B102704M
Reaction of the cyclopentadienyl–amidinate supported imidotitanium complexes [Ti(η-C5Me5){MeC(NiPr)2}(NR)] (R = tBu 1a or Ar 1b where Ar = 2,6-C6H3Me2) with CO2 proceed via initial cycloaddition reactions, but depending on the imido N-substituent go on to yield products of either isocyanate extrusion or double CO2 insertion, the latter forming [Ti(η-C5Me5){MeC(NiPr)2}{O(CO)N(Ar)(CO)O}] 4; the double CO2 insertion reaction leading to 4 is the first example for any transition metal imide.
Co-reporter:Michael E. G. Skinner, David A. Cowhig and Philip Mountford
Chemical Communications 2000 (Issue 13) pp:1167-1168
Publication Date(Web):14 Jun 2000
DOI:10.1039/B002455O
Straightforward, multigram synthesis of the new
diamide–diamine proligand H2N2NN′
[N2NN′ =
(2-NC5H4)CH2N(CH2CH2
NSiMe3)2] is described along with a preliminary
survey of the five- and six-coordinate, neutral and cationic, single- and
multiply-bonded complexes of groups 3, 4 and 5 that it can support; the
related bis(alkoxide)–diamine proligand
H2O2NN′ is also described where
H2O2NN′ =
(2-NC5H4)CH2N(CH2CMe2
OH)2.
Co-reporter:Hellen E. Dyer, Saskia Huijser, Andrew D. Schwarz, Chao Wang, Robbert Duchateau and Philip Mountford
Dalton Transactions 2008(Issue 1) pp:NaN35-35
Publication Date(Web):2007/10/26
DOI:10.1039/B714583G
The reaction of Sm{N(SiMe3)2}3 with the bis(phenol)amines H2O2NR (H2O2NR = RCH2CH2N(2-HO-3,5-C6H2tBu2)2; R = OMe, NMe2 or Me) gave exclusively zwitterions Sm(O2NR)(HO2NR). For R = OMe or NMe2 these were efficient catalysts for the ring-opening polymerisation of ε-caprolactone and D,L-lactide with a tendency to form cyclic esters; in contrast, no polymerisation was observed for R = Me.