James B. Ames

Find an error

Name: Ames, James B.
Organization: University of California, Davis , USA
Department: Department of Chemistry
Title: (PhD)
Co-reporter:Nathan C. Rockwell, Shelley S. Martin, Sunghyuk Lim, J. Clark Lagarias, and James B. Ames
Biochemistry 2015 Volume 54(Issue 24) pp:3772-3783
Publication Date(Web):May 20, 2015
DOI:10.1021/acs.biochem.5b00438
Cyanobacteriochromes (CBCRs) are cyanobacterial photosensory proteins distantly related to phytochromes. Like phytochromes, CBCRs reversibly photoconvert between a dark-stable state and a photoproduct via photoisomerization of the 15,16-double bond of their linear tetrapyrrole (bilin) chromophores. CBCRs provide cyanobacteria with complete coverage of the visible spectrum and near-ultraviolet region. One CBCR subfamily, the canonical red/green CBCRs typified by AnPixJg2 and NpR6012g4, can function as sensors of light color or intensity because of their great variation in photoproduct stability. The mechanistic basis for detection of green light by the photoproduct state in this subfamily has proven to be a challenging research topic, with competing hydration and trapped-twist models proposed. Here, we use 13C-edited and 15N-edited 1H–1H NOESY solution nuclear magnetic resonance spectroscopy to probe changes in chromophore configuration and protein–chromophore interactions in the NpR6012g4 photocycle. Our results confirm a C15-Z,anti configuration for the red-absorbing dark state and reveal a C15-E,anti configuration for the green-absorbing photoproduct. The photoactive chromophore D-ring is located in a hydrophobic environment in the photoproduct, surrounded by both aliphatic and aromatic residues. Characterization of variant proteins demonstrates that no aliphatic residue is essential for photoproduct tuning. Taken together, our results support the trapped-twist model over the hydration model for the red/green photocycle of NpR6012g4.
Co-reporter:Nathan C. Rockwell, Shelley S. Martin, Sunghyuk Lim, J. Clark Lagarias, and James B. Ames
Biochemistry 2015 Volume 54(Issue 16) pp:2581-2600
Publication Date(Web):April 6, 2015
DOI:10.1021/bi501548t
Cyanobacteriochromes (CBCRs) are cyanobacterial photoreceptors distantly related to phytochromes. Both CBCRs and phytochromes use photoisomerization of a linear tetrapyrrole (bilin) chromophore to photoconvert between two states with distinct spectral and biochemical properties, the dark state and the photoproduct. The isolated CBCR domain NpR6012g4 from Nostoc punctiforme is a well-characterized member of the canonical red/green CBCR subfamily, photosensory domains that can function as sensors for light color or intensity to regulate phototactic responses of filamentous cyanobacteria. Such red/green CBCRs utilize conserved Phe residues to tune the photoproduct for green light absorption, but conflicting interpretations of the photoproduct chromophore structure have been proposed. In the hydration model, the proposed photoproduct state is extensively solvated, with a loosely bound, conformationally flexible chromophore. In the trapped-twist model, the photoproduct chromophore is sterically constrained by hydrophobic amino acids, including the known Phe residues. Here, we have characterized chromophore structure in NpR6012g4 using solution nuclear magnetic resonance spectroscopy and a series of labeled chromophores. Four NH resonances are assigned for both the red-absorbing dark state and the green-absorbing photoproduct. Moreover, observed 13C chemical shifts are in good agreement with those obtained for protonated rather than deprotonated bilins in ab initio calculations. Our results demonstrate that NpR6012g4 has a protonated, cationic bilin π system in both photostates, consistent with a photoproduct structure in which the chromophore is not extensively hydrated.
Co-reporter:Sunghyuk Lim, Nathan C. Rockwell, Shelley S. Martin, Jerry L. Dallas, J. Clark Lagarias and James B. Ames  
Photochemical & Photobiological Sciences 2014 vol. 13(Issue 6) pp:951-962
Publication Date(Web):07 Apr 2014
DOI:10.1039/C3PP50442E
Cyanobacteriochromes (CBCRs) are cyanobacterial photoreceptors distantly related to phytochromes. All CBCRs examined to date utilize a conserved Cys residue to form a covalent thioether linkage to the bilin chromophore. In the insert-Cys CBCR subfamily, a second conserved Cys can covalently link to the bilin C10 methine bridge, allowing detection of near-UV to blue light. The best understood insert-Cys CBCR is the violet/orange CBCR NpF2164g3 from Nostoc punctiforme, which has a stable second linkage in the violet-absorbing dark state. Photoconversion of NpF2164g3 leads to elimination of the second linkage and formation of an orange-absorbing photoproduct. We recently reported NMR chemical shift assignments for the orange-absorbing photoproduct state of NpF2164g3. We here present equivalent information for its violet-absorbing dark state. In both photostates, NpF2164g3 is monomeric in solution and regions containing the two conserved Cys residues essential for photoconversion are structurally disordered. In contrast to blue light receptors such as phototropin, NpF2164g3 is less structurally ordered in the dark state than in the photoproduct. The insert-Cys insertion loop and C-terminal helix exhibit light-dependent structural changes. Moreover, a motif containing an Asp residue also found in other CBCRs and in phytochromes adopts a random-coil structure in the dark state but a stable α-helix structure in the photoproduct. NMR analysis of the chromophore is consistent with a less ordered dark state, with A-ring resonances only resolved in the photoproduct. The C10 atom of the bilin chromophore exhibits a drastic change in chemical shift upon photoconversion, changing from 34.5 ppm (methylene) in the dark state to 115 ppm (methine) in the light-activated state. Our results provide structural insight into the two-Cys photocycle of NpF2164g3 and the structurally diverse mechanisms used for light perception by the larger phytochrome superfamily.
Co-reporter:William K. Myers, Xianzhong Xu, Congmin Li, Jens O. Lagerstedt, Madhu S. Budamagunta, John C. Voss, R. David Britt, and James B. Ames
Biochemistry 2013 Volume 52(Issue 34) pp:
Publication Date(Web):August 1, 2013
DOI:10.1021/bi400538w
Recoverin, a member of the neuronal calcium sensor (NCS) branch of the calmodulin superfamily, is expressed in retinal photoreceptor cells and serves as a calcium sensor in vision. Ca2+-induced conformational changes in recoverin cause extrusion of its covalently attached myristate (termed Ca2+-myristoyl switch) that promotes translocation of recoverin to disk membranes during phototransduction in retinal rod cells. Here we report double electron–electron resonance (DEER) experiments on recoverin that probe Ca2+-induced changes in distance as measured by the dipolar coupling between spin-labels strategically positioned at engineered cysteine residues on the protein surface. The DEER distance between nitroxide spin-labels attached at C39 and N120C is 2.5 ± 0.1 nm for Ca2+-free recoverin and 3.7 ± 0.1 nm for Ca2+-bound recoverin. An additional DEER distance (5–6 nm) observed for Ca2+-bound recoverin may represent an intermolecular distance between C39 and N120. 15N NMR relaxation analysis and CW-EPR experiments both confirm that Ca2+-bound recoverin forms a dimer at protein concentrations above 100 μM, whereas Ca2+-free recoverin is monomeric. We propose that Ca2+-induced dimerization of recoverin at the disk membrane surface may play a role in regulating Ca2+-dependent phosphorylation of dimeric rhodopsin. The DEER approach will be useful for elucidating dimeric structures of NCS proteins in general for which Ca2+-induced dimerization is functionally important but not well understood.
Co-reporter:Congmin Li;Colin W. Taylor;Ana M. Rossi;Min-Duk Seo;Taufiq Rahman;Mitsuhiko Ikura;Peter B. Stathopulos;Masahiro Enomoto
PNAS 2013 Volume 110 (Issue 21 ) pp:8507-8512
Publication Date(Web):2013-05-21
DOI:10.1073/pnas.1220847110
Calcium-binding protein 1 (CaBP1) is a neuron-specific member of the calmodulin superfamily that regulates several Ca2+ channels, including inositol 1,4,5-trisphosphate receptors (InsP3Rs). CaBP1 alone does not affect InsP3R activity, but it inhibits InsP3-evoked Ca2+ release by slowing the rate of InsP3R opening. The inhibition is enhanced by Ca2+ binding to both the InsP3R and CaBP1. CaBP1 binds via its C lobe to the cytosolic N-terminal region (NT; residues 1–604) of InsP3R1. NMR paramagnetic relaxation enhancement analysis demonstrates that a cluster of hydrophobic residues (V101, L104, and V162) within the C lobe of CaBP1 that are exposed after Ca2+ binding interact with a complementary cluster of hydrophobic residues (L302, I364, and L393) in the β-domain of the InsP3-binding core. These residues are essential for CaBP1 binding to the NT and for inhibition of InsP3R activity by CaBP1. Docking analyses and paramagnetic relaxation enhancement structural restraints suggest that CaBP1 forms an extended tetrameric turret attached by the tetrameric NT to the cytosolic vestibule of the InsP3R pore. InsP3 activates InsP3Rs by initiating conformational changes that lead to disruption of an intersubunit interaction between a “hot-spot” loop in the suppressor domain (residues 1–223) and the InsP3-binding core β-domain. Targeted cross-linking of residues that contribute to this interface show that InsP3 attenuates cross-linking, whereas CaBP1 promotes it. We conclude that CaBP1 inhibits InsP3R activity by restricting the intersubunit movements that initiate gating.
2-QUINAZOLINECARBOXYLIC ACID, 1,4-DIHYDRO-6-METHYL-4-OXO-, ETHYL ESTER
Ethyl 4-chloro-6-methylquinazoline-2-carboxylate
Quinazoline, 4-chloro-2-[(1E)-2-(4-chlorophenyl)ethenyl]-6,7-dimethoxy-
4(3H)-Quinazolinone,6-iodo-2-methyl-
2,4-DICHLORO-6-METHYLQUINAZOLINE
2,6-Dimethylquinazolin-4(1H)-one
3-[(6-Chlorothiazolo[5,4-b]pyridin-2-yl)methoxy]-2,6-difluorobenzamide