Co-reporter:Panagiotis Kondylis, Jinsheng Zhou, Zachary D. Harms, Andrew R. Kneller, Lye Siang Lee, Adam Zlotnick, and Stephen C. Jacobson
Analytical Chemistry May 2, 2017 Volume 89(Issue 9) pp:4855-4855
Publication Date(Web):March 21, 2017
DOI:10.1021/acs.analchem.6b04491
To improve the precision of resistive-pulse measurements, we have used a focused ion beam instrument to mill nanofluidic devices with 2, 4, and 8 pores in series and compared their performance. The in-plane design facilitates the fabrication of multiple pores in series which, in turn, permits averaging of the series of pulses generated from each translocation event. The standard deviations (σ) of the pulse amplitude distributions decrease by 2.7-fold when the average amplitudes of eight pulses are compared to the amplitudes of single pulses. Similarly, standard deviations of the pore-to-pore time distributions decrease by 3.2-fold when the averages of the seven measurements from 8-pore devices are contrasted to single measurements from 2-pore devices. With signal averaging, the inherent uncertainty in the measurements decreases; consequently, the resolution (mean/σ) improves by a factor equal to the square root of the number of measurements. We took advantage of the improved size resolution of the 8-pore devices to analyze in real time the assembly of Hepatitis B Virus (HBV) capsids below the pseudocritical concentration. We observe that abundances of assembly intermediates change over time. During the first hour of the reaction, the abundance of smaller intermediates decreased, whereas the abundance of larger intermediates with sizes closer to a T = 4 capsid remained constant.
Co-reporter:Christa M. Snyder, Xiaomei Zhou, Jonathan A. Karty, Bryan R. Fonslow, Milos V. Novotny, Stephen C. Jacobson
Journal of Chromatography A 2017 Volume 1523(Volume 1523) pp:
Publication Date(Web):10 November 2017
DOI:10.1016/j.chroma.2017.09.009
•Capillary electrophoresis–mass spectrometric analysis of N-glycans derived from serum.•Identification of a total of 77 potential N-glycan structures in human serum.•Determination of specific linkages on isomers featuring sialic acids.Through direct coupling of capillary electrophoresis (CE) to mass spectrometry (MS) with a sheathless interface, we have identified 77 potential N-glycan structures derived from human serum. We confirmed the presence of N-glycans previously identified by indirect methods, e.g., electrophoretic mobility standards, obtained 31 new N-glycan structures not identified in our prior work, differentiated co-migrating structures, and determined specific linkages on isomers featuring sialic acids. Serum N-glycans were cleaved from proteins, neutralized via methylamidation, and labeled with the fluorescent tag 8-aminopyrene-1,3,6-trisulfonic acid, which renders the glycan fluorescent and provides a −3 charge for electrophoresis and negative-mode MS detection. The neutralization reaction also stabilizes the labile sialic acids. In addition to methylamidation, native charges from sialic acids were neutralized through reaction with 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium to amidate α2,6-linked sialic acids in the presence of ammonium chloride and form lactones with α2,3-linked sialic acids. This neutralization effectively labels each type of sialic acid with a unique mass to determine specific linkages on sialylated N-glycans. For both neutralization schemes, we compared the results from microchip electrophoresis and CE.
Co-reporter:Joshua D. Baker, David T. Kysela, Jinsheng Zhou, Seth M. Madren, Andrew S. Wilkens, Yves V. Brun, and Stephen C. Jacobson
Analytical Chemistry 2016 Volume 88(Issue 17) pp:8476
Publication Date(Web):June 17, 2016
DOI:10.1021/acs.analchem.6b00889
We describe a microfluidic device with an integrated nanochannel array to trap individual bacteria and monitor growth and reproduction of lineages over multiple generations. Our poly(dimethylsiloxane) device comprises a pneumatically actuated nanochannel array that includes 1280 channels with widths from 600 to 1000 nm to actively trap diverse bacteria. Integrated pumps and valves perform on-chip fluid and cell manipulations that provide dynamic control of cell loading and nutrient flow, permitting chemostatic growth for extended periods of time (typically 12 to 20 h). Nanochannels confine bacterial growth to a single dimension, facilitating high-resolution, time-lapse imaging and tracking of individual cells. We use the device to monitor the growth of single bacterial cells that undergo symmetric (Bacillus subtilis) and asymmetric (Caulobacter crescentus) division and reconstruct their lineages to correlate growth measurements through time and among related cells. Furthermore, we monitor the motility state of single B. subtilis cells across multiple generations by the expression of a fluorescent reporter protein and observe that the state of the epigenetic switch is correlated over five generations. Our device allows imaging of cellular lineages with high spatiotemporal resolution to facilitate the analysis of biological processes spanning multiple generations.
Co-reporter:Andrew R. Kneller, Daniel G. Haywood, and Stephen C. Jacobson
Analytical Chemistry 2016 Volume 88(Issue 12) pp:6390
Publication Date(Web):May 27, 2016
DOI:10.1021/acs.analchem.6b00839
We report efficient pumping of fluids through nanofluidic funnels when a symmetric AC waveform is applied. The asymmetric geometry of the nanofluidic funnel induces not only ion current rectification but also electroosmotic flow rectification. In the base-to-tip direction, the funnel exhibits a lower ion conductance and a higher electroosmotic flow velocity, whereas, in the tip-to-base direction, the funnel has a higher ion conductance and a lower electroosmotic flow velocity. Consequently, symmetric AC waveforms easily pump fluid through the nanofunnels over a range of frequencies, e.g., 5 Hz to 5 kHz. In our experiments, the nanofunnels were milled into glass substrates with a focused ion beam (FIB) instrument, and the funnel design had a constant 5° taper with aspect ratios (funnel tip width to funnel depth) of 0.1 to 1.0. We tracked ion current rectification by current–voltage (I–V) response and electroosmotic flow rectification by transport of a zwitterionic fluorescent probe. Rectification of ion current and electroosmotic flow increased with increasing electric field applied to the nanofunnel. Our results support three-dimensional simulations of ion transport and electroosmotic transport through nanofunnels, which suggest the asymmetric electroosmotic transport stems from an induced pressure at the junction of the nanochannel and nanofunnel tip.
Co-reporter:Indranil Mitra, Christa M. Snyder, Xiaomei Zhou, Margit I. Campos, William R. Alley Jr., Milos V. Novotny, and Stephen C. Jacobson
Analytical Chemistry 2016 Volume 88(Issue 18) pp:8965
Publication Date(Web):August 9, 2016
DOI:10.1021/acs.analchem.6b00882
To characterize the structures of N-glycans derived from human serum, we report a strategy that combines microchip electrophoresis, standard addition, enzymatic digestion, and matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). We compared (i) electrophoretic mobilities of known N-glycans from well-characterized (standard) glycoproteins through standard addition, (ii) the electrophoretic mobilities of N-glycans with their molecular weights determined by MALDI-MS, and (iii) electrophoretic profiles of N-glycans enzymatically treated with fucosidase. The key step to identify the sialylated N-glycans was to quantitatively neutralize the negative charge on both α2,3- and α2,6-linked sialic acids by covalent derivatization with methylamine. Both neutralized and nonsialylated N-glycans from these samples were then reacted with 8-aminopyrene-1,3,6-trisulfonic acid (APTS) to provide a fluorescent label and a triple-negative charge, separated by microchip electrophoresis, and detected by laser-induced fluorescence. The methylamidation step leads to a 24% increase in the peak capacity of the separation and direct correlation of electrophoretic and MALDI-MS results. In total, 37 unique N-glycan structures were assigned to 52 different peaks recorded in the electropherograms of the serum samples. This strategy ensures the needed separation efficiency and detectability, easily resolves linkage and positional glycan isomers, and is highly reproducible.
Co-reporter:Zachary D. Harms, Daniel G. Haywood, Andrew R. Kneller, Lisa Selzer, Adam Zlotnick, and Stephen C. Jacobson
Analytical Chemistry 2015 Volume 87(Issue 1) pp:699
Publication Date(Web):November 28, 2014
DOI:10.1021/ac503527d
Electrophoretic mobilities and particle sizes of individual Hepatitis B Virus (HBV) capsids were measured in nanofluidic channels with two nanopores in series. The channels and pores had three-dimensional topography and were milled directly in glass substrates with a focused ion beam instrument assisted by an electron flood gun. The nanochannel between the two pores was 300 nm wide, 100 nm deep, and 2.5 μm long, and the nanopores at each end had dimensions 45 nm wide, 45 nm deep, and 400 nm long. With resistive-pulse sensing, the nanopores fully resolved pulse amplitude distributions of T = 3 HBV capsids (32 nm outer diameter) and T = 4 HBV capsids (35 nm outer diameter) and had sufficient peak capacity to discriminate intermediate species from the T = 3 and T = 4 capsid distributions in an assembly reaction. Because the T = 3 and T = 4 capsids have a wiffle-ball geometry with a hollow core, the observed change in current due to the capsid transiting the nanopore is proportional to the volume of electrolyte displaced by the volume of capsid protein, not the volume of the entire capsid. Both the signal-to-noise ratio of the pulse amplitude and resolution between the T = 3 and T = 4 distributions of the pulse amplitudes increase as the electric field strength is increased. At low field strengths, transport of the larger T = 4 capsid through the nanopores is hindered relative to the smaller T = 3 capsid due to interaction with the pores, but at sufficiently high field strengths, the T = 3 and T = 4 capsids had the same electrophoretic mobilities (7.4 × 10–5 cm2 V–1 s–1) in the nanopores and in the nanochannel with the larger cross-sectional area.
Co-reporter:Daniel G. Haywood, Anumita Saha-Shah, Lane A. Baker, and Stephen C. Jacobson
Analytical Chemistry 2015 Volume 87(Issue 1) pp:172
Publication Date(Web):November 18, 2014
DOI:10.1021/ac504180h
Co-reporter:Michelle D. Hoffman, Lauren I. Zucker, Pamela J. B. Brown, David T. Kysela, Yves V. Brun, and Stephen C. Jacobson
Analytical Chemistry 2015 Volume 87(Issue 24) pp:12032
Publication Date(Web):October 23, 2015
DOI:10.1021/acs.analchem.5b02087
In the environment, most bacteria form surface-attached cell communities called biofilms. The attachment of single cells to surfaces involves an initial reversible stage typically mediated by surface structures such as flagella and pili, followed by a permanent adhesion stage usually mediated by polysaccharide adhesives. Here, we determine the absolute and relative timescales and frequencies of reversible and irreversible adhesion of single cells of the bacterium Caulobacter crescentus to a glass surface in a microfluidic device. We used fluorescence microscopy of C. crescentus expressing green fluorescent protein to track the swimming behavior of individual cells prior to adhesion, monitor the cell at the surface, and determine whether the cell reversibly or irreversibly adhered to the surface. A fluorescently labeled lectin that binds specifically to polar polysaccharides, termed holdfast, discriminated irreversible adhesion events from reversible adhesion events where no holdfast formed. In wild-type cells, the holdfast production time for irreversible adhesion events initiated by surface contact (23 s) was 30-times faster than the holdfast production time that occurs through developmental regulation (13 min). Irreversible adhesion events in wild-type cells (3.3 events/min) are 15-times more frequent than in pilus-minus mutant cells (0.2 events/min), indicating the pili are critical structures in the transition from reversible to irreversible surface-stimulated adhesion. In reversible adhesion events, the dwell time of cells at the surface before departing was the same for wild-type cells (12 s) and pilus-minus mutant cells (13 s), suggesting the pili do not play a significant role in reversible adhesion. Moreover, reversible adhesion events in wild-type cells (6.8 events/min) occur twice as frequently as irreversible adhesion events (3.3 events/min), demonstrating that most cells contact the surface multiple times before transitioning from reversible to irreversible adhesion.
Co-reporter:Zachary D. Harms, Daniel G. Haywood, Andrew R. Kneller and Stephen C. Jacobson
Analyst 2015 vol. 140(Issue 14) pp:4779-4791
Publication Date(Web):11 May 2015
DOI:10.1039/C5AN00075K
This review covers conductivity detection in fabricated nanochannels and nanopores. Improvements in nanoscale sensing are a direct result of advances in fabrication techniques, which produce devices with channels and pores with reproducible dimensions and in a variety of materials. Analytes of interest are detected by measuring changes in conductance as the analyte accumulates in the channel or passes transiently through the pore. These detection methods take advantage of phenomena enhanced at the nanoscale, such as ion current rectification, surface conductance, and dimensions comparable to the analytes of interest. The end result is the development of sensing technologies for a broad range of analytes, e.g., ions, small molecules, proteins, nucleic acids, and particles.
Co-reporter:Zachary D. Harms, Lisa Selzer, Adam Zlotnick, and Stephen C. Jacobson
ACS Nano 2015 Volume 9(Issue 9) pp:9087
Publication Date(Web):August 12, 2015
DOI:10.1021/acsnano.5b03231
Virus assembly is a coordinated process in which typically hundreds of subunits react to form complex, symmetric particles. We use resistive-pulse sensing to characterize the assembly of hepatitis B virus core protein dimers into T = 3 and T = 4 icosahedral capsids. This technique counts and sizes intermediates and capsids in real time, with single-particle sensitivity, and at biologically relevant concentrations. Other methods are not able to produce comparable real-time, single-particle observations of assembly reactions below, near, and above the pseudocritical dimer concentration, at which the dimer and capsid concentrations are approximately equal. Assembly reactions across a range of dimer concentrations reveal three distinct patterns. At dimer concentrations as low as 50 nM, well below the pseudocritical dimer concentration of 0.5 μM, we observe a switch in the ratio of T = 3 to T = 4 capsids, which increases with decreasing dimer concentration. Far above the pseudocritical dimer concentration, kinetically trapped, incomplete T = 4 particles assemble rapidly, then slowly anneal into T = 4 capsids. At all dimer concentrations tested, T = 3 capsids form more rapidly than T = 4 capsids, suggesting distinct pathways for the two forms.Keywords: hepatitis B virus; in-plane nanochannel; nanofluidics; resistive-pulse sensing; self-assembly; single-particle counting;
Co-reporter:Daniel G. Haywood, Zachary D. Harms, and Stephen C. Jacobson
Analytical Chemistry 2014 Volume 86(Issue 22) pp:11174
Publication Date(Web):October 20, 2014
DOI:10.1021/ac502596m
We report the measurement of electroosmotic mobilities in nanofluidic channels with rectangular cross sections and compare our results with theory. Nanofluidic channels were milled directly into borosilicate glass between two closely spaced microchannels with a focused ion beam instrument, and the nanochannels had half-depths (h) of 27, 54, and 108 nm and the same half-width of 265 nm. We measured electroosmotic mobilities in NaCl solutions from 0.1 to 500 mM that have Debye lengths (κ–1) from 30 to 0.4 nm, respectively. The experimental electroosmotic mobilities compare quantitatively to mobilities calculated from a nonlinear solution of the Poisson–Boltzmann equation for channels with a parallel-plate geometry. For the calculations, ζ-potentials measured in a microchannel with a half-depth of 2.5 μm are used and range from −6 to −73 mV for 500 to 0.1 mM NaCl, respectively. For κh > 50, the Smoluchowski equation accurately predicts electroosmotic mobilities in the nanochannels. However, for κh < 10, the electrical double layer extends into the nanochannels, and due to confinement within the channels, the average electroosmotic mobilities decrease. At κh ≈ 4, the electroosmotic mobilities in the 27, 54, and 108 nm channels exhibit maxima, and at 0.1 mM NaCl, the electroosmotic mobility in the 27 nm channel (κh = 1) is 5-fold lower than the electroosmotic mobility in the 2.5 μm channel (κh = 100).
Co-reporter:Indranil Mitra, William R. Alley Jr., John A. Goetz, Jacqueline A. Vasseur, Milos V. Novotny, and Stephen C. Jacobson
Journal of Proteome Research 2013 Volume 12(Issue 10) pp:4490-4496
Publication Date(Web):2017-2-22
DOI:10.1021/pr400549e
Ovarian cancer is the fifth leading cause of cancer-related mortalities for women in the United States and the most lethal gynecological cancer. Aberrant glycosylation has been linked to several human diseases, including ovarian cancer, and accurate measurement of changes in glycosylation may provide relevant diagnostic and prognostic information. In this work, we used microchip electrophoresis coupled with laser-induced fluorescence detection to determine quantitative differences among the N-glycan profiles of control individuals and late-stage recurrent ovarian cancer patients prior to and after an experimental drug treatment that combined docetaxel and imatinib mesylate. N-Glycans were enzymatically released from 5-μL aliquots of serum samples, labeled with the anionic fluorescent tag, 8-aminopyrene-1,3,6-trisulfonic acid, and analyzed on microfluidic devices. A 22-cm long separation channel, operated at 1250 V/cm, generated analysis times less than 100 s, separation efficiencies up to 8 × 105 plates (3.6 × 106 plates/m), and migration time reproducibilities better than 0.1% relative standard deviation after peak alignment. Principal component analysis (PCA) and analysis of variance (ANOVA) tests showed significant differences between the control and both pre- and post-treatment cancer samples and subtle differences between the pre- and post-treatment cancer samples. Area-under-the-curve (AUC) values from receiver operating characteristics (ROC) tests were used to evaluate the diagnostic merit of N-glycan peaks, and specific N-glycan peaks used in combination provided AUCs > 0.90 (highly accurate test) when the control and pretreatment cancer samples and control and post-treatment samples were compared.
Co-reporter:Dzmitry Hlushkou, John M. Perry, Stephen C. Jacobson, and Ulrich Tallarek
Analytical Chemistry 2012 Volume 84(Issue 1) pp:267
Publication Date(Web):November 23, 2011
DOI:10.1021/ac202501v
We study ionic current rectification observed in a nanofluidic device with a nanofunnel positioned between two straight nanochannels. Ion transport is simulated by resolving the coupled three-dimensional Nernst–Planck, Poisson, and Navier–Stokes equations. In the modeled system, the electric double layer extends into the channel, and consequently, the funnel tip exhibits charge-selective properties, which results in the formation of enriched and depleted concentration polarization (CP) zones within the nanofunnel in the high- and low-conductance states, respectively. This scenario is similar to the one observed for ion transport through a charged conical nanopore connecting two macroscopic reservoirs. However, the presence of the adjacent straight nanochannels allows the CP zones to propagate out of the funnel into the adjoining channels. The condition for propagation of the CP zones is determined by several parameters, including the electroosmotic flow velocity. We demonstrate that in the high-conductance regime the modeled system is characterized by increased ionic concentrations in the entire cathodic nanochannel, whereas in the low-conductance state the depleted CP zone does not propagate out of the funnel and remains localized. The required three-dimensional modeling scheme is implemented on a parallel computational platform, is general as well as numerically efficient, and will be useful in the study of more advanced nanofluidic device designs for tailoring ionic current rectification.
Co-reporter:Indranil Mitra, Zexi Zhuang, Yuening Zhang, Chuan-Yih Yu, Zane T. Hammoud, Haixu Tang, Yehia Mechref, and Stephen C. Jacobson
Analytical Chemistry 2012 Volume 84(Issue 8) pp:3621
Publication Date(Web):March 5, 2012
DOI:10.1021/ac203431s
We report analysis of N-glycans derived from disease-free individuals and patients with Barrett’s esophagus, high-grade dysplasia, and esophageal adenocarcinoma by microchip electrophoresis with laser-induced fluorescence detection. Serum samples in 10 μL aliquots are enzymatically treated to cleave the N-glycans that are subsequently reacted with 8-aminopyrene-1,3,6-trisulfonic acid to add charge and a fluorescent label. Separations at 1250 V/cm and over 22 cm yielded efficiencies up to 700 000 plates for the N-glycans and analysis times under 100 s. Principal component analysis (PCA) and analysis of variance (ANOVA) tests of the peak areas and migration times are used to evaluate N-glycan profiles from native and desialylated samples and determine differences among the four sample groups. With microchip electrophoresis, we are able to distinguish the three patient groups from each other and from disease-free individuals.
Co-reporter:Seth M. Madren, Michelle D. Hoffman, Pamela J. B. Brown, David T. Kysela, Yves V. Brun, and Stephen C. Jacobson
Analytical Chemistry 2012 Volume 84(Issue 20) pp:8571
Publication Date(Web):October 3, 2012
DOI:10.1021/ac301565g
We report the development of an automated microfluidic “baby machine” to synchronize the bacterium Caulobacter crescentus on-chip and to move the synchronized populations downstream for analysis. The microfluidic device is fabricated from three layers of poly(dimethylsiloxane) and has integrated pumps and valves to control the movement of cells and media. This synchronization method decreases incubation time and media consumption and improves synchrony quality compared to the conventional plate-release technique. Synchronized populations are collected from the device at intervals as short as 10 min and at any time over four days. Flow cytometry and fluorescence cell tracking are used to determine synchrony quality, and cell populations synchronized in minimal growth medium with 0.2% glucose (M2G) and peptone yeast extract (PYE) medium contain >70% and >80% swarmer cells, respectively. Our on-chip method overcomes limitations with conventional physical separation methods that consume large volumes of media, require manual manipulations, have lengthy incubation times, are limited to one collection, and lack precise temporal control of collection times.
Co-reporter:Kaimeng Zhou ; Lichun Li ; Zhenning Tan ; Adam Zlotnick
Journal of the American Chemical Society 2011 Volume 133(Issue 6) pp:1618-1621
Publication Date(Web):January 25, 2011
DOI:10.1021/ja108228x
We report characterization of hepatitis B virus (HBV) capsids by resistive-pulse sensing through single track-etched conical nanopores formed in poly(ethylene terephthalate) membranes. The pores were ∼40 nm in diameter at the tip, and the pore surface was covalently modified with triethylene glycol to reduce surface charge density, minimize adsorption of the virus capsids, and suppress electroosmotic flow in the pore. The HBV capsids were assembled in vitro from Cp149, the assembly domain of HBV capsid protein. Assembled T = 3 (90 Cp149 dimer) and T = 4 (120 dimer) capsids are 31 and 36 nm in diameter, respectively, and were easily discriminated by monitoring the change in current as capsids passed through an electrically biased pore. The ratio of the number of T = 3 to T = 4 capsids transiting a pore did not reflect actual concentrations, but favored transport of smaller T = 3 capsids. These results combined with longer transit times for the T = 4 capsids indicated that the capsids must overcome an entropic barrier to enter a pore.
Co-reporter:Zachary D. Harms, Klaus B. Mogensen, Pedro S. Nunes, Kaimeng Zhou, Brett W. Hildenbrand, Indranil Mitra, Zhenning Tan, Adam Zlotnick, Jörg P. Kutter, and Stephen C. Jacobson
Analytical Chemistry 2011 Volume 83(Issue 24) pp:9573
Publication Date(Web):October 26, 2011
DOI:10.1021/ac202358t
We report fabrication and characterization of nanochannel devices with two nanopores in series for resistive-pulse sensing of hepatitis B virus (HBV) capsids. The nanochannel and two pores are patterned by electron beam lithography between two microchannels and etched by reactive ion etching. The two nanopores are 50-nm wide, 50-nm deep, and 40-nm long and are spaced 2.0-μm apart. The nanochannel that brackets the two pores is 20× wider (1 μm) to reduce the electrical resistance adjacent to the two pores and to ensure the current returns to its baseline value between resistive-pulse events. Average pulse amplitudes differ by <2% between the two pores and demonstrate that the fabrication technique is able to produce pores with nearly identical geometries. Because the two nanopores in series sense single particles at two discrete locations, particle properties, e.g., electrophoretic mobility, are determined from the pore-to-pore transit time.
Co-reporter:Michelle L. Kovarik, Pamela J. B. Brown, David T. Kysela, Cécile Berne, Anna C. Kinsella, Yves V. Brun, and Stephen C. Jacobson
Analytical Chemistry 2010 Volume 82(Issue 22) pp:9357
Publication Date(Web):October 20, 2010
DOI:10.1021/ac101977f
Motile bacteria bias the random walk of their motion in response to chemical gradients by the process termed chemotaxis, which allows cells to accumulate in favorable environments and disperse from less favorable ones. In this work, we describe a simple microchannel-nanopore device that establishes a stable chemical gradient for chemotaxis assays in ≤1 min. Chemoattractant is dispensed by diffusion through 10 nm diameter pores at the intersection of two microchannels. This design requires no external pump and minimizes the effect of transmembrane pressure, resulting in a stable, reproducible gradient. The microfluidic platform facilitates microscopic observation of individual cell trajectories, and chemotaxis is quantified by monitoring changes in cell swimming behavior in the vicinity of the intersection. We validate this system by measuring the chemotactic response of an aquatic bacterium, Caulobacter crescentus, to xylose concentrations from 1.3 μM to 1.3 M. Additionally, we make an unanticipated observation of increased turn frequency in a chemotaxis-impaired mutant which provides new insight into the chemotaxis pathway in C. crescentus.
Co-reporter:John M. Perry, Kaimeng Zhou, Zachary D. Harms and Stephen C. Jacobson
ACS Nano 2010 Volume 4(Issue 7) pp:3897
Publication Date(Web):June 30, 2010
DOI:10.1021/nn100692z
We report fabrication of nanofluidic channels with asymmetric features (e.g., funnels) that were cast in high modulus poly(dimethylsiloxane) and had well-defined geometries and dimensions. Masters used to cast the funnels were written in the negative tone resist SU-8 by electron beam lithography. Replicated funnels had taper angles of 5, 10, and 20° and were 80 nm wide at the tip, 1 μm wide at the base, and 120 nm deep. The planar format permitted easy coupling of the funnels to microfluidic channels and simultaneous electrical and optical characterization of ion transport. All three designs rectified ion current, and the 5° funnel exhibited the highest rectification ratio. Fluorescence measurements at the funnel base showed that an anionic probe was enriched and depleted in the high and low conductance states, respectively.Keywords: electron beam lithography; high modulus poly(dimethylsiloxane); ion current rectification; nanochannel; nanofluidics; nanofunnel
Co-reporter:Zexi Zhuang and Stephen C. Jacobson
Analytical Chemistry 2009 Volume 81(Issue 4) pp:1477
Publication Date(Web):January 16, 2009
DOI:10.1021/ac801774p
We report serial-to-parallel interfaces for rapidly and efficiently transferring samples from a single microfluidic channel to multiple parallel channels. Three designs and operation modes were evaluated to determine the most efficient transfer process. All designs employed two routing channels to direct the sample into the parallel channels and to prevent sample from leaking into adjacent channels. For two of the three designs, a tee valve and gated valve were added to the interface prior to routing the samples to assist with sample injections into the parallel channels. Injection times as short as 20 ms and injection frequencies up to 10 Hz were achieved with relative standard deviations less than 0.5% for the injected area. With an injection time of 50 ms and injection frequency of 10 Hz, up to 50% of the sample is efficiently transferred. Among the three designs, the interface with the gated valve provided the highest performance and reproducibility.
Co-reporter:Michelle L. Kovarik, Kaimeng Zhou and Stephen C. Jacobson
The Journal of Physical Chemistry B 2009 Volume 113(Issue 49) pp:15960-15966
Publication Date(Web):November 13, 2009
DOI:10.1021/jp9076189
Asymmetric nanoscale conduits, such as conical track-etch pores, rectify ion current due to surface charge effects. To date, most data concerning this phenomenon have been obtained for small nanopores with diameters comparable to the electrical double layer thickness. Here, we systematically evaluate rectification for nanopores in poly(ethylene terephthalate) membranes with tip diameters of 10, 35, 85, and 380 nm. Current−voltage behavior is determined for buffer concentrations from 1 mM to 1 M and pHs 3.4 and 6.7. In general, ion current rectification increases with decreasing tip diameter, with decreasing ionic strength, and at higher pH. Surface charge contributes to increased pore conductivities compared to bulk buffer conductivities, though double layer overlap is not necessary for rectification to occur. Interestingly, the 35 nm pore exhibits a maximum rectification ratio for the 0.01 M buffer at pH 6.7, and the 380 nm pores exhibit nearly diodelike current−voltage curves when initially etched and strong rectification after the ion current has stabilized.
Co-reporter:Margaret A. Lerch, Michelle D. Hoffman and Stephen C. Jacobson
Lab on a Chip 2008 vol. 8(Issue 2) pp:316-322
Publication Date(Web):05 Dec 2007
DOI:10.1039/B713500A
We report enhanced sample confinement on microfluidic devices using a combination of electrokinetic flow from adjacent control channels and electric field shaping with an array of channels perpendicular to the sample stream. The basic device design consisted of a single first dimension (1D) channel, intersecting an array of 32 or 96 parallel second dimension (2D) channels. To minimize sample dispersion and leakage into the parallel channels as the sample traversed the sample transfer region, control channels were placed to the left and right of the 1D and waste channels. The electrokinetic flow from the control channels confined the sample stream and acted as a buffer between the sample stream and the 2D channels. To further enhance sample confinement, the electric field was shaped parallel to the sample stream by placing the channel array in close proximity to the sample transfer region. Using COMSOL Multiphysics, initial work focused on simulating the electric fields and fluid flows in various device geometries, and the results guided device design. Following the design phase, we fabricated devices with 40, 80, and 120 µm wide control channels and evaluated the sample stream width as a function of the electric field strength ratio in the control and 1D channels (EC/E1D). For the 32 channel design, the 40 and 80 µm wide control channels produced the most effective sample confinement with stream widths as narrow as 75 µm, and for the 96 channel design, all three control channel widths generated comparable sample stream widths. Comparison of the 32 and 96 channel designs showed sample confinement scaled easily with the length of the sample transfer region.