Shun-ichi Murahashi

Find an error

Name:
Organization: Okayama University of Science
Department: 1 Department of Chemistry, Graduate School of Engineering Science
Title:
Co-reporter:Shun-Ichi Murahashi, Dazhi Zhang, Hiroki Iida, Toshio Miyawaki, Masaaki Uenaka, Kenji Murano and Kanji Meguro  
Chemical Communications 2014 vol. 50(Issue 71) pp:10295-10298
Publication Date(Web):18 Jul 2014
DOI:10.1039/C4CC05216A
An efficient and practical catalytic method for the aerobic oxidative transformation of sulfides into sulfoxides, and thiols into disulfides with formic acid/TEA in the presence of a new, readily available, and stable flavin catalyst 5d is described.
Co-reporter:Yukiko Hayashi, Naruyoshi Komiya, Ken Suzuki, Shun-Ichi Murahashi
Tetrahedron Letters 2013 Volume 54(Issue 21) pp:2706-2709
Publication Date(Web):22 May 2013
DOI:10.1016/j.tetlet.2013.03.074
Copper-catalyzed oxidative functionalization of C–H bonds of alkanes with molecular oxygen has been performed in the presence of Cu(OAc)2 catalyst and acetaldehyde in acetonitrile at 70 °C with extremely high turn-over numbers.
Co-reporter:Ken Suzuki, Tomonari Watanabe, and Shun-Ichi Murahashi
The Journal of Organic Chemistry 2013 Volume 78(Issue 6) pp:2301-2310
Publication Date(Web):February 26, 2013
DOI:10.1021/jo302262a
The oxidative transformation of primary amines to their corresponding oximes proceeds with high efficiency under molecular oxygen diluted with molecular nitrogen (O2/N2 = 7/93 v/v, 5 MPa) in the presence of the catalysts 1,1-diphenyl-2-picrylhydrazyl (DPPH) and tungusten oxide/alumina (WO3/Al2O3). The method is environmentally benign, because the reaction requires only molecular oxygen as the terminal oxidant and gives water as a side product. Various alicyclic amines and aliphatic amines can be converted to their corresponding oximes in excellent yields. It is noteworthy that the oxidative transformation of primary amines proceeds chemoselectively in the presence of other functional groups. The key step of the present oxidation is a fast electron transfer from the primary amine to DPPH followed by proton transfer to give the α-aminoalkyl radical intermediate, which undergoes reaction with molecular oxygen and hydrogen abstraction to give α-aminoalkyl hydroperoxide. Subsequent reaction of the peroxide with WO3/Al2O3 gives oximes. The aerobic oxidation of secondary amines gives the corresponding nitrones. Aerobic oxidative transformation of cyclohexylamines to cyclohexanone oximes is important as a method for industrial production of ε-caprolactam, a raw material for Nylon 6.
Co-reporter:Shun-Ichi Murahashi;Noriko Miyaguchi;Shinji Noda;Takeshi Naota;Akiko Fujii;Yasutaka Inubushi;Naruyoshi Komiya
European Journal of Organic Chemistry 2011 Volume 2011( Issue 27) pp:5355-5365
Publication Date(Web):
DOI:10.1002/ejoc.201100740

Abstract

The ruthenium-catalyzed oxidation of phenols with tert-butylhydroperoxide efficiently gives the corresponding 4-(tert-butylperoxy)cyclohexadienones. The oxidation proceeds selectively because of ruthenium's ability for rapid single-electron transfer. This biomimetic oxidation reaction is highly useful to obtain the metabolic compounds desired for confirming the safety of medicines and related compounds. Typically, the first metabolic compound of the female hormone estrone is readily obtained by this biomimetic oxidation reaction. The resulting 4-(tert-butylperoxy)cyclohexadienones are versatile synthetic intermediates, which can be transformed into 2-substituted 1,4-benzoquinones by treatment with acid catalysts. Acid-promoted rearrangement followed by a Diels–Alder reaction provides a new strategy for the synthesis of fused cyclic compounds, such as naphthoquinone and anthraquinone derivatives, from readily available phenols. The nonnatural 1,4-diacetoxy steroidal skeleton is obtained by the oxidation of estrone followed by zinc-mediated migration. Vitamin K3 is synthesized selectively from p-cresol in an overall 79 % yield in 4 steps, and the synthesis includes the ruthenium-catalyzed oxidation.

Co-reporter:Hikaru Takaya ; Masatsugu Ito
Journal of the American Chemical Society 2009 Volume 131(Issue 31) pp:10824-10825
Publication Date(Web):July 16, 2009
DOI:10.1021/ja9036669
The ReH7(PPh3)2-catalyzed addition of carbonyl compounds to the carbon−nitrogen bond of nitriles proceeds efficiently and selectively to give the corresponding (Z)-enamines, which are important synthetic intermediates. The key step of the reaction is the chemoselective α-C−H activation of carbonyl compounds induced by the α-heteroatom effect in the presence of nitriles.
Co-reporter:Yong Guo Dr.;Xiaming Zhao Dr.;Dazhi Zhang Dr. Dr.
Angewandte Chemie 2009 Volume 121( Issue 25) pp:
Publication Date(Web):
DOI:10.1002/ange.200990132

No abstract is available for this article.

Co-reporter:Yong Guo Dr.;Xiaming Zhao Dr.;Dazhi Zhang Dr. Dr.
Angewandte Chemie 2009 Volume 121( Issue 11) pp:
Publication Date(Web):
DOI:10.1002/ange.200805852
Co-reporter:Yong Guo Dr.;Xiaming Zhao Dr.;Dazhi Zhang Dr. Dr.
Angewandte Chemie International Edition 2009 Volume 48( Issue 25) pp:
Publication Date(Web):
DOI:10.1002/anie.200990130

No abstract is available for this article.

Co-reporter:Yong Guo Dr.;Xiaming Zhao Dr.;Dazhi Zhang Dr. Dr.
Angewandte Chemie International Edition 2009 Volume 48( Issue 11) pp:
Publication Date(Web):
DOI:10.1002/anie.200805852
Co-reporter:Shun-Ichi Murahashi and Dazhi Zhang  
Chemical Society Reviews 2008 vol. 37(Issue 8) pp:1490-1501
Publication Date(Web):16 Jun 2008
DOI:10.1039/B706709G
Simulation of the function of cytochrome P-450 with low valent ruthenium complex catalysts leads to the discovery of biomimetic, catalytic oxidation of various substrates selectively under mild conditions. The reactions discussed in this tutorial review are simple, clean, and practical. The principle of these reactions is fundamental and gives wide-scope and environmentally benign future practical methods.
Co-reporter:Ken Suzuki;Tomonari Watanabe Dr.
Angewandte Chemie International Edition 2008 Volume 47( Issue 11) pp:2079-2081
Publication Date(Web):
DOI:10.1002/anie.200705002
Co-reporter:Yasushi Imada  Dr.;Hiroki Iida Dr.;Satoshi Ono;Yoshiyuki Masui Dr.   Dr.
Chemistry – An Asian Journal 2006 Volume 1(Issue 1-2) pp:
Publication Date(Web):10 JUL 2006
DOI:10.1002/asia.200600080

Flavin-catalyzed green oxidation of heteroatom compounds such as sulfides and amines with molecular oxygen and even air in the presence of hydrazine monohydrate in a fluorous solvent such as 2,2,2-trifluoroethanol at room temperature gives the corresponding oxidation products highly efficiently and selectively along with water and molecular nitrogen, which are environmentally benign by-products. The proposed reaction mechanism is based on the kinetics, solvent effect, and redox properties of flavin catalysts.

Co-reporter:Shun-Ichi Murahashi, Naruyoshi Komiya,Hiroyuki Terai
Angewandte Chemie International Edition 2005 44(42) pp:6931-6933
Publication Date(Web):
DOI:10.1002/anie.200501496
Co-reporter:Yasushi Imada Dr.;Hiroki Iida Dr.;Takeshi Naota Dr.
Angewandte Chemie International Edition 2005 Volume 44(Issue 11) pp:
Publication Date(Web):3 FEB 2005
DOI:10.1002/anie.200462429

Highly chemoselective Baeyer–Villiger oxidations can be performed in the presence of other reactive functionalities such as alcohols, olefins, and sulfides, which would undergo electrophilic oxidation under conventional conditions (see scheme). [DMRFlEt]+[ClO4] (depicted blue) is a new class of flavin compound that catalyzes aerobic Baeyer–Villiger oxidations in the presence of Zn dust as the electron source.

Co-reporter:Shun-Ichi Murahashi Dr.;Naruyoshi Komiya Dr.;Hiroyuki Terai
Angewandte Chemie 2005 Volume 117(Issue 42) pp:
Publication Date(Web):29 SEP 2005
DOI:10.1002/ange.200501496

Vielseitige Zwischenstufen zur Synthese von N-Aryl-α-aminosäuren und N,N-disubstituierten 1,2-Diaminen sind durch Ruthenium-katalysierte oxidative Cyanierung von tertiären Aminen zugänglich. Die Verwendung von Wasserstoffperoxid als Oxidationsmittel in Gegenwart von NaCN/AcOH oder HCN liefert die entsprechenden α-Aminonitrile (siehe Schema).

Co-reporter:Yasushi Imada Dr.;Hiroki Iida Dr.;Takeshi Naota Dr.
Angewandte Chemie 2005 Volume 117(Issue 11) pp:
Publication Date(Web):3 FEB 2005
DOI:10.1002/ange.200462429

Empfindliche Substrate wie Alkohole, Olefine und Sulfide, die unter gewöhnlichen Baeyer-Villiger-Bedingungen elektrophile Oxidationen eingehen würden, bleiben in einer hoch chemoselektiven katalytischen Baeyer-Villiger-Oxidation unversehrt (siehe Schema). Die Flavin-Verbindung [DMRFlEt]+[ClO4] (blau) katalysiert die aerobe Baeyer-Villiger-Oxidation in Gegenwart von Zinkstaub.

Co-reporter:Shun-Ichi Murahashi;Satoru Noji;Naruyoshi Komiya
Advanced Synthesis & Catalysis 2004 Volume 346(Issue 2-3) pp:
Publication Date(Web):29 MAR 2004
DOI:10.1002/adsc.200303190

A (salen)manganese(III) complex bearing a chiral binaphthyl strapping unit catalyzes the enantioselective hydroxylation of indane (up to 34% ee) and the epoxidation of alkenes (up to 93% ee) with iodosylbenzene.

Co-reporter:Hikaru Takaya Dr.;Kazunori Yoshida;Katsuhiro Isozaki;Hiroki Terai Dr.
Angewandte Chemie 2003 Volume 115(Issue 28) pp:
Publication Date(Web):16 JUL 2003
DOI:10.1002/ange.200351689

Balanceakt: Der Iridiumkomplex 1 ermöglicht die Durchführung säure- und basenkatalysierter Umsetzungen in einer Eintopfreaktion. Mit ihm können pharmakologisch wichtige Glutarimide in einer Dreikomponenten-Reaktion aus Nitrilen, Alkenen und Wasser aufgebaut werden (siehe Schema).

Co-reporter:Hikaru Takaya Dr.;Kazunori Yoshida;Katsuhiro Isozaki;Hiroki Terai Dr.
Angewandte Chemie International Edition 2003 Volume 42(Issue 28) pp:
Publication Date(Web):16 JUL 2003
DOI:10.1002/anie.200351689

Mutual destruction of reagents in acid- and base-promoted reactions in the same container is now avoidable with the iridium polyhydride complex [IrH5(PiPr3)2] (1), which is an ambiphilic Lewis acid and base catalyst. By using catalyst 1, a three-component reaction of nitriles, olefins, and water proceeds efficiently to give glutarimides, which are pharmacologically important (see scheme).

Co-reporter:Shun-Ichi Murahashi Dr.;Satoshi Ono;Yasushi Imada Dr.
Angewandte Chemie International Edition 2002 Volume 41(Issue 13) pp:
Publication Date(Web):1 JUL 2002
DOI:10.1002/1521-3773(20020703)41:13<2366::AID-ANIE2366>3.0.CO;2-S

The chiral organocatalyst bisflavin 1 catalyzes the asymmetric Baeyer–Villiger reaction of cyclobutanones with H2O2 (see scheme). The corresponding lactones are obtained with up to 74 % ee.

Co-reporter:Shun-Ichi Murahashi Dr.;Satoshi Ono;Yasushi Imada Dr.
Angewandte Chemie 2002 Volume 114(Issue 13) pp:
Publication Date(Web):1 JUL 2002
DOI:10.1002/1521-3757(20020703)114:13<2472::AID-ANGE2472>3.0.CO;2-B

Der chirale Organokatalysator Bisflavin 1 katalysiert asymmetrische Baeyer-Villiger-Reaktionen von Cyclobutanonen mit H2O2 (siehe Schema). Die entsprechenden Lactone werden mit bis zu 74 % ee erhalten.

Co-reporter:Shun-Ichi Murahashi and Dazhi Zhang
Chemical Society Reviews 2008 - vol. 37(Issue 8) pp:NaN1501-1501
Publication Date(Web):2008/06/16
DOI:10.1039/B706709G
Simulation of the function of cytochrome P-450 with low valent ruthenium complex catalysts leads to the discovery of biomimetic, catalytic oxidation of various substrates selectively under mild conditions. The reactions discussed in this tutorial review are simple, clean, and practical. The principle of these reactions is fundamental and gives wide-scope and environmentally benign future practical methods.
Co-reporter:Shun-Ichi Murahashi, Dazhi Zhang, Hiroki Iida, Toshio Miyawaki, Masaaki Uenaka, Kenji Murano and Kanji Meguro
Chemical Communications 2014 - vol. 50(Issue 71) pp:NaN10298-10298
Publication Date(Web):2014/07/18
DOI:10.1039/C4CC05216A
An efficient and practical catalytic method for the aerobic oxidative transformation of sulfides into sulfoxides, and thiols into disulfides with formic acid/TEA in the presence of a new, readily available, and stable flavin catalyst 5d is described.
ACETAMIDE, N-[4-(METHYLSULFINYL)PHENYL]-
P-(TRIMETHYLSILYL)PHENYLMETHANETHIOL
N,N-DIMETHYL-4-METHYLSULFINYLANILINE
Benzenethiol,4-dodecyl-
Benzo[g]pteridine-2,4(3H,10H)-dione,3,7,8,10-tetramethyl-
1,3-dithiane 1-oxide
N-(4-(Methylthio)phenyl)acetamide
Benzoic acid,2,2'-dithiobis-, 1,1'-dimethyl ester
(7,8-dimethyl-2,4-dioxo-3,4-dihydrobenzo[g]pteridin-10(2H)-yl)acetaldehyde