Co-reporter:Bryan A. Rosales, Michael P. Hanrahan, Brett W. Boote, Aaron J. Rossini, Emily A. Smith, and Javier Vela
ACS Energy Letters April 14, 2017 Volume 2(Issue 4) pp:906-906
Publication Date(Web):March 3, 2017
DOI:10.1021/acsenergylett.6b00674
Hybrid lead perovskites containing a mixture of organic and inorganic cations and anions have led to solar cell devices with performance and stability that are better than those of their single-halide analogs. 207Pb solid-state nuclear magnetic resonance and single-particle photoluminescence spectroscopies show that the structure and composition of mixed-halide and likely other hybrid lead perovskites are much more complex than previously thought and are highly dependent on their synthesis. While a majority of reports in the area focus on the construction of photovoltaic devices, this Perspective focuses instead on achieving a better understanding of the fundamental chemistry and photophysics of these materials, because this will aid not only in constructing improved devices but also in generating new uses for these unique materials.
Co-reporter:Daniel J. Freppon;Long Men;Sadie J. Burkhow;Jacob W. Petrich;Javier Vela
Journal of Materials Chemistry C 2017 vol. 5(Issue 1) pp:118-126
Publication Date(Web):2016/12/22
DOI:10.1039/C6TC03886G
We present the time-correlated luminescence of isolated nanocrystals of five methylammonium lead mixed-halide perovskite compositions (CH3NH3PbBr3−xIx) that were synthesized with varying iodide and bromide anion loading. All analyzed nanocrystals had a spherical morphology with diameters in the range of 2 to 32 nm. The luminescence maxima of CH3NH3PbBr3−xIx nanocrystals were tuned to wavelengths ranging between 498 and 740 nm by varying the halide loading. Both CH3NH3PbI3 and CH3NH3PbBr3 nanocrystals exhibited no luminescence intermittency for more than 90% of the 250 s analysis time, as defined by a luminescence intensity three standard deviations above the background. The mixed halide CH3NH3PbBr0.75I0.25, CH3NH3PbBr0.50I0.50, and CH3NH3PbBr0.25I0.75 nanocrystals exhibited luminescence intermittency in 18%, 4% and 26% of the nanocrystals, respectively. Irrespective of luminescence intermittency, luminescence intensities were classified for each nanocrystal as: (a) constant, (b) multimodal, (c) photobrightening, and (d) photobleaching. Based on their photophysics, the CH3NH3PbBr3−xIx nanocrystals can be expected to be useful in a wide-range of applications where low and non-intermittent luminescence is desirable, for example as imaging probes and in films for energy conversion devices.
Co-reporter:Jonathan M. Bobbitt, Deyny Mendivelso-Pérez, Emily A. Smith
Polymer 2016 Volume 107() pp:82-88
Publication Date(Web):19 December 2016
DOI:10.1016/j.polymer.2016.10.063
•Nondestructive method to simultaneously measure multiple polymer film parameters.•Raman amplitude ratio describes mixed polymer film fractional compositions.•Average 5% difference between SA Raman and profilometry thickness measurements.•Method suitable for any mixed polymer waveguide sample.•Method offers the possibility of in situ measurements of polymer films.A scanning angle (SA) Raman spectroscopy method was developed to simultaneously measure the chemical composition and thickness of waveguide mixed polymer films with varying fractional compositions. In order to test the method, six films of polystyrene-block-poly(methyl methacrylate), some mixed with poly(methyl methacrylate) homopolymer (PS-b-PMMA:PMMA), and two films of poly(2-vinylnapthalene)-block-poly(methyl methacrylate) (P2VN-b-PMMA) were prepared. The film thickness ranged from 495 to 971 nm. The chemical composition and thickness of PS-b-PMMA:PMMA films was varied by the addition of the PMMA homopolymer and annealing the films in acetone. SA Raman peak amplitude ratios (1001 cm−1 for PS, 812 cm−1 for PMMA, and 1388 cm−1 for P2VN) were used to calculate the refractive index of the polymer film, an input parameter in calculations of the sum square electric field (SSEF). The film thickness was determined by SSEF models of the experimental Raman amplitudes versus the incident angle of light. The average film thickness determined by the developed SA Raman spectroscopy method was within 5% of the value determined by optical profilometry. SA Raman spectroscopy will be useful for in situ label-free analyses of mixed polymer waveguide films.
Co-reporter:Pratik P. Goswami; Aleem Syed; Christie L. Beck; Toshia R. Albright; Kaitlyn M. Mahoney; Ryan Unash; Emily A. Smith;Arthur H. Winter
Journal of the American Chemical Society 2015 Volume 137(Issue 11) pp:3783-3786
Publication Date(Web):March 9, 2015
DOI:10.1021/jacs.5b01297
Photoremovable protecting groups derived from meso-substituted BODIPY dyes release acetic acid with green wavelengths >500 nm. Photorelease is demonstrated in cultured S2 cells. The photocaging structures were identified by our previously proposed strategy of computationally searching for carbocations with low-energy diradical states as a possible indicator of a nearby productive conical intersection. The superior optical properties of these photocages make them promising alternatives to the popular o-nitrobenzyl photocage systems.
Co-reporter:Craig A. Damin, Vy H. T. Nguyen, Auguste S. Niyibizi and Emily A. Smith
Analyst 2015 vol. 140(Issue 6) pp:1955-1964
Publication Date(Web):11 Feb 2015
DOI:10.1039/C4AN02240H
Near-infrared scanning angle (SA) Raman spectroscopy was utilized to determine the interface location in bilayer films (a stack of two polymer layers) of polystyrene (PS) and polycarbonate (PC). Finite-difference-time-domain (FDTD) calculations of the sum square electric field (SSEF) for films with total bilayer thicknesses of 1200–3600 nm were used to construct models for simultaneously measuring the film thickness and the location of the buried interface between the PS and PC layers. Samples with total thicknesses of 1320, 1890, 2300, and 2750 nm and varying PS/PC interface locations were analyzed using SA Raman spectroscopy. Comparing SA Raman spectroscopy and optical profilometry measurements, the average percent difference in the total bilayer thickness was 2.0% for films less than ∼2300 nm thick. The average percent difference in the thickness of the PS layer, which reflects the interface location, was 2.5% when the PS layer was less than ∼1800 nm. SA Raman spectroscopy has been shown to be a viable, non-destructive method capable of determining the total bilayer thickness and buried interface location for bilayer samples consisting of thin polymer films with comparable indices of refraction.
Co-reporter:Feng Zhu, Long Men, Yijun Guo, Qiaochu Zhu, Ujjal Bhattacharjee, Peter M. Goodwin, Jacob W. Petrich, Emily A. Smith, and Javier Vela
ACS Nano 2015 Volume 9(Issue 3) pp:2948
Publication Date(Web):February 9, 2015
DOI:10.1021/nn507020s
Organometallic halide perovskites CH3NH3PbX3 (X = I, Br, Cl) have quickly become one of the most promising semiconductors for solar cells, with photovoltaics made of these materials reaching power conversion efficiencies of near 20%. Improving our ability to harness the full potential of organometal halide perovskites will require more controllable syntheses that permit a detailed understanding of their fundamental chemistry and photophysics. In this manuscript, we systematically synthesize CH3NH3PbX3 (X = I, Br) nanocrystals with different morphologies (dots, rods, plates or sheets) by using different solvents and capping ligands. CH3NH3PbX3 nanowires and nanorods capped with octylammonium halides show relatively higher photoluminescence (PL) quantum yields and long PL lifetimes. CH3NH3PbI3 nanowires monitored at the single particle level show shape-correlated PL emission across whole particles, with little photobleaching observed and very few off periods. This work highlights the potential of low-dimensional organometal halide perovskite semiconductors in constructing new porous and nanostructured solar cell architectures, as well as in applying these materials to other fields such as light-emitting devices and single particle imaging and tracking.Keywords: morphology control; nanocrystals; organometal halide perovskites; preferred orientation; single particle photoluminescence; size control;
Co-reporter:Jonathan M. Bobbitt, Stephen C. Weibel, Moneim Elshobaki, Sumit Chaudhary, and Emily A. Smith
Analytical Chemistry 2014 Volume 86(Issue 24) pp:11957
Publication Date(Web):November 20, 2014
DOI:10.1021/ac504103g
Fourier transform (FT)-plasmon waveguide resonance (PWR) spectroscopy measures light reflectivity at a waveguide interface as the incident frequency and angle are scanned. Under conditions of total internal reflection, the reflected light intensity is attenuated when the incident frequency and angle satisfy conditions for exciting surface plasmon modes in the metal as well as guided modes within the waveguide. Expanding upon the concept of two-frequency surface plasmon resonance developed by Peterlinz and Georgiadis [ Opt. Commun. 1996, 130, 260], the apparent index of refraction and the thickness of a waveguide can be measured precisely and simultaneously by FT-PWR with an average percent relative error of 0.4%. Measuring reflectivity for a range of frequencies extends the analysis to a wide variety of sample compositions and thicknesses since frequencies with the maximum attenuation can be selected to optimize the analysis. Additionally, the ability to measure reflectivity curves with both p- and s-polarized light provides anisotropic indices of refraction. FT-PWR is demonstrated using polystyrene waveguides of varying thickness, and the validity of FT-PWR measurements are verified by comparing the results to data from profilometry and atomic force microscopy (AFM).
Co-reporter:Michael D. Lesoine, Jonathan M. Bobbitt, Shaobin Zhu, Ning Fang, Emily A. Smith
Analytica Chimica Acta 2014 Volume 848() pp:61-66
Publication Date(Web):27 October 2014
DOI:10.1016/j.aca.2014.07.040
•A scanning angle Raman microscope with improved instrumental design is reported.•Improvements include large scanning angle range and low angular spread.•Technique provides chemical content information with high axial spatial resolution.•Benefits of visible excitation wavelengths in SA Raman measurements are discussed.A scanning angle (SA) Raman microscope with 532-nm excitation is reported for probing chemical content perpendicular to a sample interface. The instrument is fully automated to collect Raman spectra across a range of incident angles from 20.50 to 79.50° with an angular spread of 0.4 ± 0.2° and an angular uncertainty of 0.09°. Instrumental controls drive a rotational stage with a fixed axis of rotation relative to a prism-based sample interface mounted on an inverted microscope stage. Three benefits of SA Raman microscopy using visible wavelengths, compared to near infrared wavelengths are: (i) better surface sensitivity; (ii) increased signal due to the frequency to the fourth power dependence of the Raman signal, and the possibility for resonant enhancement; (iii) the need to scan a reduced angular range to shorten data collection times. These benefits were demonstrated with SA Raman measurements of thin polymer films of polystyrene or a diblock copolymer of polystyrene and poly(3-hexylthiophene-2,5-diyl). Thin film spectra were collected with a signal-to-noise ratio of 30 using a 0.25 s acquisition time.
Co-reporter:Aleem Syed;Michael D. Lesoine;Ujjal Bhattacharjee;Jacob W. Petrich
Photochemistry and Photobiology 2014 Volume 90( Issue 4) pp:767-772
Publication Date(Web):
DOI:10.1111/php.12248
Abstract
Time binning is used to increase the number of photon counts in the peak channel of stimulated emission depletion fluorescence lifetime decay curves to determine how it affects the resulting lifetime image. The fluorescence lifetime of the fluorophore, Alexa Fluor 594 phalloidin, bound to F-actin is probed in cultured S2 cells at a spatial resolution of ~40 nm. This corresponds to a 10-fold smaller probe volume compared to confocal imaging, and a reduced number of photons contributing to the signal. Pixel-by-pixel fluorescence lifetime measurements and error analysis show that an average of 40 ± 30 photon counts in the peak channel with a signal-to-noise ratio of 20 is enough to calculate a reliable fluorescence lifetime from a single exponential fluorescence decay. No heterogeneity in the actin cytoskeleton in different regions of the cultured cells was measured in the 40–400 nm spatial regime.
Co-reporter:Michael D. Lesoine ; Jonathan M. Bobbitt ; John A. Carr ; Moneim Elshobaki ; Sumit Chaudhary
The Journal of Physical Chemistry C 2014 Volume 118(Issue 51) pp:30229-30237
Publication Date(Web):November 20, 2014
DOI:10.1021/jp509589g
The photostability of bulk heterojunction organic photovoltaic films containing a polymer donor and a fullerene-derivative acceptor was examined using resonance Raman spectroscopy and controlled laser power densities. The polymer donors were poly(3-hexylthiophene-2,5-diyl) (P3HT), poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl] (PCDTBT), or poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}) (PTB7). Four sample preparation methods were studied: (i) thin or (ii) thick films with fast solvent evaporation under nitrogen, (iii) thick films with slow solvent evaporation under nitrogen, and (iv) thin films dried under nitrogen followed by thermal annealing. Polymer order was assessed by monitoring a Raman peak’s full width at half-maximum and location as a function of illumination time and laser power densities from 2.5 × 103 to 2.5 × 105 W cm–2. Resonance Raman spectroscopy measurements show that before prolonged illumination, PCDTBT and PTB7 have the same initial order for all preparation conditions, while P3HT order improves with slow solvent drying or thermal annealing. All films exhibited changes to bulk heterojunction structure with 2.5 × 105 Wcm–2 laser illumination as measured by resonance Raman spectroscopy, and atomic force microscopy images show evidence of sample heating that affects the polymer over an area greater than the illumination profile. Photostability data are important for proper characterization by techniques involving illumination and the development of devices suitable for real-world applications.
Co-reporter:Dipak Mainali;Aleem Syed;Neha Arora
European Biophysics Journal 2014 Volume 43( Issue 12) pp:603-611
Publication Date(Web):2014 December
DOI:10.1007/s00249-014-0990-9
Integrins are ubiquitous transmembrane receptors with adhesion and signaling properties. The influence of insulin receptor and insulin signaling on αPS2CβPS integrins’ lateral diffusion was studied using single particle tracking in S2 cells before and after reducing the insulin receptor expression or insulin stimulation. Insulin signaling was monitored by Western blotting for phospho-Akt expression. The expression of the insulin receptor was reduced using RNA interference (RNAi). After insulin receptor RNAi, four significant changes were measured in integrin diffusion properties: (1) there was a 24 % increase in the mobile integrin population, (2) 14 % of the increase was represented by integrins with Brownian diffusion, (3) for integrins that reside in confined zones of diffusion, there was a 45 % increase in the diameter of the confined zone, and (4) there was a 29 % increase in the duration integrins spend in confined zones of diffusion. In contrast to reduced expression of the insulin receptor, which alters integrin diffusion properties, insulin stimulation alone or insulin stimulation under conditions of reduced insulin receptor expression have minimal effects on altering the measured integrin diffusion properties. The differences in integrin diffusion measured after insulin receptor RNAi in the presence or absence of insulin stimulation may be the result of other insulin signaling pathways that are activated at reduced insulin receptor conditions. No change in the average integrin diffusion coefficient was measured for any conditions included in this study.
Co-reporter:Matthew W. Meyer, Kelsey L. Larson, Rakesh C. Mahadevapuram, Michael D. Lesoine, John A. Carr, Sumit Chaudhary, and Emily A. Smith
ACS Applied Materials & Interfaces 2013 Volume 5(Issue 17) pp:8686
Publication Date(Web):August 16, 2013
DOI:10.1021/am4023225
Interest in realizing conjugated polymer-based films with controlled morphology for efficient electronic devices, including photovoltaics, requires a parallel effort to characterize these films. Scanning angle (SA) Raman spectroscopy is applied to measure poly(3-hexylthiophene) (P3HT):phenyl–C61–butyric acid methyl ester (PCBM)-blend morphology on sapphire, gold, and indium tin oxide interfaces, including functional organic photovoltaic devices. Nonresonant SA Raman spectra are collected in seconds with signal-to-noise ratios that exceed 80, which is possible due to the reproducible SA signal enhancement. Raman spectra are collected as the incident angle of the 785 nm excitation laser is precisely varied upon a prism/sample interface from approximately 35 to 70°. The width of the ∼1447 cm–1 thiophene C═C stretch is sensitive to P3HT order, and polymer order varied depending on the underlying substrate. This demonstrates the importance of performing the spectroscopic measurements on substrates and configurations used in the functioning devices, which is not a common practice. The experimental measurements are modeled with calculations of the interfacial mean square electric field to determine the distance dependence of the SA Raman signal. SA Raman spectroscopy is a versatile method applicable whenever the chemical composition, structure, and thickness of interfacial polymer layers need to be simultaneously measured.Keywords: conjugated polymer films; P3HT; PCBM; phenyl−C61−butyric acid methyl ester; Raman spectroscopy; thin film characterization;
Co-reporter:Matthew W. Meyer, Vy H.T. Nguyen, Emily A. Smith
Vibrational Spectroscopy 2013 Volume 65() pp:94-100
Publication Date(Web):March 2013
DOI:10.1016/j.vibspec.2012.11.020
Scanning angle (SA) Raman spectroscopy was used to measure the thickness and composition of polystyrene films. A sapphire prism was optically coupled to a sapphire substrate on which 6–12% (w/v) polystyrene in toluene was spin coated. Raman spectra were collected as the incident angle of the p-polarized, 785-nm excitation laser was varied from 56 to 70°. These angles span above and below the critical angle for a sapphire/polystyrene interface. The thickness of the polystyrene film was determined using a calibration curve constructed by calculating the integrated optical energy density distribution as a function of incident angle, distance from the prism interface and polymer thickness. The calculations were used to determine the incident angle where waveguide modes are excited within the polymer film, which is the angle with the highest integrated optical energy density. The film thicknesses measured by SA Raman spectroscopy ranged from less than 400 nm to 1.8 μm. The average percent uncertainty in the SA Raman determinations for all films was 4%, and the measurements agreed with those obtained from optical interferometery within the experimental uncertainty for all but two films. For the 1270-nm and 580-nm polystyrene films, the SA Raman measurements overestimated the film thickness by 5 and 18%, respectively. The dependence of the calibration curve on excitation polarization and composition of the polymer and bulk layers was evaluated. This preliminary investigation demonstrates that scanning angle Raman spectroscopy is a versatile method applicable whenever the chemical composition and thickness of interfacial polymer layers needs to be measured.
Co-reporter:Michael D. Lesoine ; Ujjal Bhattacharjee ; Yijun Guo ; Javier Vela ; Jacob W. Petrich
The Journal of Physical Chemistry C 2013 Volume 117(Issue 7) pp:3662-3667
Publication Date(Web):January 18, 2013
DOI:10.1021/jp312231k
Subdiffraction spatial resolution luminescence depletion imaging was performed with giant CdSe/14CdS nanocrystal quantum dots (g-NQDs) dispersed on a glass slide. Luminescence depletion imaging used a Gaussian shaped excitation laser pulse overlapped with a depletion pulse, shaped into a doughnut profile, with zero intensity in the center. Luminescence from a subdiffraction volume is collected from the central portion of the excitation spot, where no depletion takes place. Up to 92% depletion of the luminescence signal was achieved. An average full width at half-maximum of 40 ± 10 nm was measured in the lateral direction for isolated g-NQDs at an air interface using luminescence depletion imaging, whereas the average full width at half-maximum was 450 ± 90 nm using diffraction-limited, confocal luminescence imaging. Time-gating of the luminescence depletion data was required to achieve the stated spatial resolution. No observable photobleaching of the g-NQDs was present in the measurements, which allowed imaging with a dwell time of 250 ms per pixel to obtain images with a high signal-to-noise ratio. The mechanism for luminescence depletion is likely stimulated emission, stimulated absorption, or a combination of the two. The g-NQDs fulfill a need for versatile, photostable tags for subdiffraction imaging schemes where high laser powers or long exposure times are used.
Co-reporter:Dipak Mainali
European Biophysics Journal 2013 Volume 42( Issue 4) pp:281-290
Publication Date(Web):2013 April
DOI:10.1007/s00249-012-0873-x
The role of ligand affinity in altering αPS2CβPS integrins’ lateral mobility was studied using single particle tracking (SPT) with ligand-functionalized quantum dots (QDs) and fluorescence recovery after photobleaching (FRAP) with fluorescent protein tagged integrins. Integrins are ubiquitous transmembrane proteins that are vital for numerous cellular functions, including bidirectional signaling and cell anchorage. Wild-type and high ligand affinity mutant (αPS2CβPS-V409D) integrins were studied in S2 cells. As measured by SPT, the integrin mobile fraction decreased by 22 % and had a 4× slower diffusion coefficient for αPS2CβPS-V409D compared to wild-type integrins. These differences are partially the result of αPS2CβPS-V409D integrins’ increased clustering. For the wild-type integrins, the average of all diffusion coefficients measured by SPT was statistically similar to the ensemble FRAP results. A 75 % slower average diffusion coefficient was measured by SPT compared to FRAP for αPS2CβPS-V409D integrins, and this may be the result of SPT measuring only ligand-bound integrins, in contrast all ligand-bound and ligand-unbound integrins are averaged in FRAP measurements. Specific binding of the ligand-functionalized QDs was 99 % for integrin expressing cells. The results prove that the ligand binding affinity affects the lateral dynamics of a subset of integrins based on the complementary SPT and FRAP data.
Co-reporter:Kristopher J. McKee, Matthew W. Meyer, and Emily A. Smith
Analytical Chemistry 2012 Volume 84(Issue 21) pp:9049
Publication Date(Web):October 9, 2012
DOI:10.1021/ac3013972
Raman spectra were collected from a 1.25 M aqueous pyridine solution, 100-nm polystyrene film or a trimethyl(phenyl)silane monolayer at a plasmon waveguide interface under total internal reflection (TIR). The plasmon waveguide resonance (PWR) interface consisted of a sapphire prism/49 to 50 nm Au/548 to 630 nm SiO2 and a monolayer, thin film or aqueous analyte. The Raman peak area as a function of incident angle was measured using a 785-nm excitation wavelength, and was compared to the Raman peak area obtained at a sapphire or sapphire/50 nm Au interface. In contrast to measurements at a bare sapphire prism, increased surface sensitivity and signal were obtained from the PWR interface. In contrast to measurements at a bare Au film where only p-polarized incident light generates an enhanced interfacial electric field, plasmon waveguide interfaces enable excitation with orthogonal polarizations using s- or p-polarized incident light. The Raman scatter from a monolayer was recorded at the PWR interface with a signal-to-noise ratio of 5.6 when averaging 3 accumulations with 3 min acquisition times using nonresonant excitation, whereas no signal was recorded from a monolayer at the sapphire interface. The reflected light from the interface enabled the identification of the incident angle where the maximum Raman scatter was produced, and the Raman signal generated at the plasmon waveguide interface was modeled by the enhanced interfacial mean square electric field relative to the incident field. In comparison to the techniques on which this work was based (i.e., PWR spectroscopy, TIR Raman spectroscopy at the prism interface, and surface plasmon resonance (SPR) Raman spectroscopy at the prism/Au interface), chemical specificity was added to PWR spectroscopy, a signal enhancement mechanism was introduced for TIR Raman spectroscopy, and polarization control of the interfacial electric field was added to SPR Raman spectroscopy.
Co-reporter:Kristopher J. McKee, Matthew W. Meyer, and Emily A. Smith
Analytical Chemistry 2012 Volume 84(Issue 10) pp:4300
Publication Date(Web):April 13, 2012
DOI:10.1021/ac203355a
Total internal reflection (TIR) Raman and reflectivity spectra were collected for nonresonant analytes as a function of incident angle at sapphire or sapphire/smooth 50 nm gold interfaces using 785 nm excitation. For both interfaces, the Raman signal as a function of incident angle is well-modeled by the calculated interfacial mean square electric field (MSEF) relative to the incident field times the thickness of the layer being probed in the Raman measurement (DRS). The Raman scatter was reproducibly enhanced at the interface containing a gold film relative to the sapphire interface by a factor of 4.3–4.6 for aqueous pyridine or 2.2–3.7 for neat nitrobenzene, depending on the analyzed vibrational mode. The mechanism for the increased Raman signal is the enhanced MSEF at incident angles where propagating surface plasmons are excited in the metal film. The background from the TIR prism was reduced by 89–95% with the addition of the gold film, and the percent relative uncertainty in peak area was reduced from 15 to 1.7% for the 1347 cm–1 mode of nitrobenzene. Single monolayers of benzenethiol (S/N = 6.8) and 4-mercaptopyridine (S/N = 16.5) on gold films were measured by TIR Raman spectroscopy with 785 nm excitation (210 mW) without resonant enhancement in 1 min.
Co-reporter:Matthew W. Meyer, Kristopher J. McKee, Vy H. T. Nguyen, and Emily A. Smith
The Journal of Physical Chemistry C 2012 Volume 116(Issue 47) pp:24987-24992
Publication Date(Web):October 31, 2012
DOI:10.1021/jp308882w
Scanning angle (SA) Raman spectroscopy was used to characterize thin polymer films at a sapphire/50 nm gold film/polystyrene/air interface. When the polymer thickness is greater than ∼260 nm, this interface behaves as a plasmon waveguide; Raman scatter is greatly enhanced with both p- and s-polarized excitation compared to an interface without the gold film. In this study, the reflected light intensities from the interface and Raman spectra were collected as a function of incident angle for three samples with different polystyrene thicknesses. The Raman peak areas were well modeled with the calculated mean-square electric field (MSEF) integrated over the polymer film at varying incident angles. A 412 nm polystyrene plasmon waveguide generated 3.34× the Raman signal at 40.52° (the plasmon waveguide resonance angle) compared to the signal measured at 70.4° (the surface plasmon resonance angle). None of the studied polystyrene plasmon waveguides produced detectable Raman scatter using a 180° backscatter collection geometry, demonstrating the sensitivity of the SA Raman technique. The data highlight the ability to measure polymer thickness, chemical content, and, when combined with calculations of MSEF as a function of distance from the interface, details of polymer structure and order. The SA Raman spectroscopy thickness measurements agreed with those obtained from optical interferometery with an average difference of 2.6%. This technique has the potential to impact the rapidly developing technologies utilizing metal/polymer films for energy storage and electronic devices.
Co-reporter:Michael D. Lesoine, Sayantan Bose, Jacob W. Petrich, and Emily A. Smith
The Journal of Physical Chemistry B 2012 Volume 116(Issue 27) pp:7821-7826
Publication Date(Web):June 13, 2012
DOI:10.1021/jp303912p
Supercontinuum (SC) stimulated emission depletion (STED) fluorescence lifetime imaging is demonstrated by using time-correlated single-photon counting (TCSPC) detection. The spatial resolution of the developed STED instrument was measured by imaging monodispersed 40-nm fluorescent beads and then determining their fwhm, and was 36 ± 9 and 40 ± 10 nm in the X and Y coordinates, respectively. The same beads measured by confocal microscopy were 450 ± 50 and 430 ± 30 nm, which is larger than the diffraction limit of light due to underfilling the microscope objective. Underfilling the objective and time gating the signal were necessary to achieve the stated STED spatial resolution. The same fluorescence lifetime (2.0 ± 0.1 ns) was measured for the fluorescent beads by using confocal or STED lifetime imaging. The instrument has been applied to study Alexa Fluor 594-phalloidin labeled F-actin-rich projections with dimensions smaller than the diffraction limit of light in cultured cells. Fluorescence lifetimes of the actin-rich projections range from 2.2 to 2.9 ns as measured by STED lifetime imaging.
Co-reporter:Matthew W. Meyer, Jason S. Lupoi, Emily A. Smith
Analytica Chimica Acta 2011 Volume 706(Issue 1) pp:164-170
Publication Date(Web):7 November 2011
DOI:10.1016/j.aca.2011.08.031
The mixed phenylpropanoid polymer lignin is one of the most abundant biopolymers on the planet and is used in the paper, pulp and biorenewable industries. For many downstream applications, the lignin monomeric composition is required, but traditional methods for performing this analysis do not necessarily represent the lignin composition as it existed in the plant. Herein, it is shown that Raman spectroscopy can be used to measure the lignin monomer composition. The use of 1064 nm excitation is needed for lignin analyses since high fluorescence backgrounds are measured at wavelengths as long as 785 nm. The instrument used for these measurements is a 1064 nm dispersive multichannel Raman spectrometer that is suitable for applications outside of the laboratory, for example in-field or in-line analyses and using remote sensing fiber optics. This spectrometer has the capability of acquiring toluene/acetonitrile spectra with 800 cm−1 spectral coverage, 6.5 cm−1 spectral resolution and 54 S/N ratio in 10 s using 280 mW incident laser powers. The 1135–1350 cm−1 and 1560–1650 cm−1 regions of the lignin spectrum can be used to distinguish among the three primary model lignin monomers: coumaric, ferulic and sinapic acids. Mixtures of the three model monomers and first derivative spectra or partial least squares analysis of the phenyl ring breathing modes around 1600 cm−1 are used to determine sugarcane lignin monomer composition. Lignin extracted from sugarcane is shown to have a predominant dimethoxylated and monomethoxylated phenylpropanoid content with a lesser amount of non-methoxylated phenol, which is consistent with sugarcane's classification as a non-woody angiosperm. The location of the phenyl ring breathing mode peaks do not shift in ethanol, methanol, isopropanol, 1,4 dioxane or acetone.Graphical abstractHighlights► A 1064 nm dispersive multichannel Raman spectrometer is described. ► Raman spectra are collected for the heterogeneous phenylpropanoid biopolymer lignin. ► A quantitative analysis of lignin monomer composition is measured from Raman spectra.
Co-reporter:Matthew W. Meyer and Emily A. Smith
Analyst 2011 vol. 136(Issue 17) pp:3542-3549
Publication Date(Web):07 Feb 2011
DOI:10.1039/C0AN00851F
Several experimental parameters affecting surface enhanced Raman (SER) signals using 488, 785 and 1064 nm excitation for eight diverse analytes are reported. Citrate reduced silver colloids having average diameters ranging from 40 ± 10 to 100 ± 20 nm were synthesized. The nanoparticles were characterized by transmission electron microscopy, dynamic light scattering and absorbance spectrophotometry before and after inducing nanoparticle aggregation with 0.99% v/v 0.5 M magnesium chloride. The nanoparticle aggregates and SERS signal were stable between 30 and 90 minutes after inducing aggregation. For the analytes 4-mercaptopyridine, 4-methylthiobenzoic acid and the dipeptide phenylalanine–cysteine using all three excitation wavelengths, the highest surface area adjusted SER signal was obtained using 70 ± 20 nm nanoparticles, which generated 290 ± 40 nm aggregates with the addition of magnesium chloride. The decrease in the SER signal using non-optimum colloids was 12 to 42% using 488 nm excitation and larger decreases in signal, up to 92%, were observed using near infrared excitation wavelengths. In contrast, pyridine, benzoic acid, and phenylalanine required 220 ± 30 nm aggregates for the highest SER signal with 785 or 1064 nm excitation, but larger aggregates (290 ± 40 nm) were required with 488 nm excitation. The optimum experimental conditions measured with the small molecule analytes held for a 10 amino acid peptide and hemoglobin. Reproducible SERS measurements with 2 to 9% RSD have been obtained by considering nanoparticle size, aggregation conditions, excitation wavelength and the nature of the analyte–silver interaction.
Co-reporter:Chien-Ju Shih, Emily A. Smith
Analytica Chimica Acta 2009 Volume 653(Issue 2) pp:200-206
Publication Date(Web):27 October 2009
DOI:10.1016/j.aca.2009.09.012
Raman spectroscopy has been used for the quantitative determination of the conversion efficiency at each step in the production of ethanol from biomass. The method requires little sample preparation; therefore, it is suitable for screening large numbers of biomass samples and reaction conditions in a complex sample matrix. Dilute acid or ammonia-pretreated corn stover was used as a model biomass for these studies. Ammonia pretreatment was suitable for subsequent measurements with Raman spectroscopy, but dilute acid-pretreated corn stover generated a large background signal that surpassed the Raman signal. The background signal is attributed to lignin, which remains in the plant tissue after dilute acid pretreatment. A commercial enzyme mixture was used for the enzymatic hydrolysis of corn stover, and glucose levels were measured with a dispersive 785 nm Raman spectrometer. The glucose detection limit in hydrolysis liquor by Raman spectroscopy was 8 g L−1. The mean hydrolysis efficiency for three replicate measurements obtained with Raman spectroscopy (86 ± 4%) was compared to the result obtained using an enzymatic reaction with UV–vis spectrophotometry detection (78 ± 8%). The results indicate good accuracy, as determined using a Student's t-test, and better precision for the Raman spectroscopy measurement relative to the enzymatic detection assay. The detection of glucose in hydrolysis broth by Raman spectroscopy showed no spectral interference, provided the sample was filtered to remove insoluble cellulose prior to analysis. The hydrolysate was further subjected to fermentation to yield ethanol. The detection limit for ethanol in fermentation broth by Raman spectroscopy was found to be 6 g L−1. Comparison of the fermentation efficiencies measured by Raman spectroscopy (80 ± 10%) and gas chromatrography–mass spectrometry (87 ± 9%) were statistically the same. The work demonstrates the utility of Raman spectroscopy for screening the entire conversion process to generate lignocellulosic ethanol.
Co-reporter:Aleem Syed, Qiaochu Zhu, Emily A. Smith
Biochimica et Biophysica Acta (BBA) - Biomembranes (December 2016) Volume 1858(Issue 12) pp:
Publication Date(Web):December 2016
DOI:10.1016/j.bbamem.2016.10.001
•RAGE ligand affinity increased linearly with the net surface charge on the ligand.•Majority of RAGE exhibit periodic confinement in cell membrane domains.•Ligand incubation affected RAGE lateral diffusion coefficient and confinement domains.•No direct correlation between ligand affinity/charge and RAGE diffusion properties•Ligand-induced changes in diffusion not measured if cholesterol concentration reduced.The effect of ligand on the lateral diffusion of receptor for advanced glycation endproducts (RAGE), a receptor involved in numerous pathological conditions, remains unknown. Single particle tracking experiments that use quantum dots specifically bound to hemagglutinin (HA)-tagged RAGE (HA-RAGE) are reported to elucidate the effect of ligand binding on HA-RAGE diffusion in GM07373 cell membranes. The ligand used in these studies is methylglyoxal modified-bovine serum albumin (MGO-BSA) containing advanced glycation end products modifications. The binding affinity between soluble RAGE and MGO-BSA increases by 1.8 to 9.7-fold as the percent primary amine modification increases from 24 to 74% and with increasing negative charge on the MGO-BSA. Ligand incubation affects the HA-RAGE diffusion coefficient, the radius of confinement, and duration of confinement. There is, however, no correlation between MGO-BSA ligand binding affinity with soluble RAGE and the extent of the changes in HA-RAGE lateral diffusion. The ligand induced changes to HA-RAGE lateral diffusion do not occur when cholesterol is depleted from the cell membrane, indicating the mechanism for ligand-induced changes to HA-RAGE diffusion is cholesterol dependent. The results presented here serve as a first step in unraveling how ligand influences RAGE lateral diffusion.
Co-reporter:Deepak Dibya, Neha Arora, Emily A. Smith
Biophysical Journal (4 August 2010) Volume 99(Issue 3) pp:
Publication Date(Web):4 August 2010
DOI:10.1016/j.bpj.2010.05.027
Reported herein is a method that can be used to study the role of cholesterol in the microclustering of a ubiquitous class of membrane receptors, termed integrins. Integrin microclustering was measured using a fluorescence resonance energy transfer assay that does not require direct attachment of fluorescent donors or acceptors onto the integrins, and thus minimizes unwanted perturbations to integrin clustering. Membrane cholesterol levels were reduced using methyl-β-cyclodextrin (mβCD), as confirmed by Amplex Red assays of total cellular lipid or plasma membrane lipid extract. Subsequent changes in integrin microclustering were measured in cells expressing wild-type (WT) or mutant integrins. Although less integrin microclustering was measured after 27% membrane cholesterol depletion in a cell line expressing WT integrins, there was no statistically significant change for cells expressing α-cytoplasmic integrin mutants after a 45% reduction in plasma membrane cholesterol, and a significant increase in clustering for cells expressing ligand-binding domain integrin mutants after a 57% decrease in membrane cholesterol. These results are explained by differences in WT and mutant integrin partitioning into lipid nanodomains. Restoration of original cholesterol levels was used to confirm that the measured changes in membrane properties were cholesterol-dependent. No correlations between lipid diffusion and integrin microclustering were measured by means of fluorescence recovery after photobleaching using a fluorescent lipid mimetic. Similar lipid diffusion coefficients were measured after cholesterol depletion, irrespective of the integrins being expressed.
Co-reporter:Daniel J. Freppon, Long Men, Sadie J. Burkhow, Jacob W. Petrich, Javier Vela and Emily A. Smith
Journal of Materials Chemistry A 2017 - vol. 5(Issue 1) pp:NaN126-126
Publication Date(Web):2016/11/25
DOI:10.1039/C6TC03886G
We present the time-correlated luminescence of isolated nanocrystals of five methylammonium lead mixed-halide perovskite compositions (CH3NH3PbBr3−xIx) that were synthesized with varying iodide and bromide anion loading. All analyzed nanocrystals had a spherical morphology with diameters in the range of 2 to 32 nm. The luminescence maxima of CH3NH3PbBr3−xIx nanocrystals were tuned to wavelengths ranging between 498 and 740 nm by varying the halide loading. Both CH3NH3PbI3 and CH3NH3PbBr3 nanocrystals exhibited no luminescence intermittency for more than 90% of the 250 s analysis time, as defined by a luminescence intensity three standard deviations above the background. The mixed halide CH3NH3PbBr0.75I0.25, CH3NH3PbBr0.50I0.50, and CH3NH3PbBr0.25I0.75 nanocrystals exhibited luminescence intermittency in 18%, 4% and 26% of the nanocrystals, respectively. Irrespective of luminescence intermittency, luminescence intensities were classified for each nanocrystal as: (a) constant, (b) multimodal, (c) photobrightening, and (d) photobleaching. Based on their photophysics, the CH3NH3PbBr3−xIx nanocrystals can be expected to be useful in a wide-range of applications where low and non-intermittent luminescence is desirable, for example as imaging probes and in films for energy conversion devices.