Vahe Bandarian

Find an error

Name: Bandarian, Vahe
Organization: University of Utah , USA
Department: Chemistry Department
Title: (PhD)
Co-reporter:Micah T. Nelp, Anthony P. Young, Branden M. Stepanski, and Vahe Bandarian
Biochemistry August 1, 2017 Volume 56(Issue 30) pp:3874-3874
Publication Date(Web):July 14, 2017
DOI:10.1021/acs.biochem.7b00608
Viperin (virus inhibitory protein, endoplasmic reticulum-associated, interferon-inducible) is a widely distributed protein that is expressed in response to infection and causes antiviral effects against a broad spectrum of viruses. Viperin is a member of the radical S-adenosyl-l-methionine (SAM) superfamily of enzymes, which typically employ a 4Fe-4S cluster to reductively cleave SAM to initiate chemistry. Though the specific reaction catalyzed by viperin remains unknown, it has been shown that expression of viperin causes an increase in the fluidity of lipid membranes, which impedes the budding of nascent viral particles from the membrane inhibiting propagation of the infection. Herein, we show that expression of the human viperin homologue induces a dramatically elongated morphology of the host Escherichia coli cells. Mutation of an essential cysteine that coordinates the radical SAM cluster abrogates this effect. Thus, the native radical SAM activity of viperin is likely occurring in the host bacteria, indicating the elusive substrate is shared between both bacteria and humans, significantly narrowing the range of potential candidate substrates and providing a convenient bacterial platform from which future studies can occur.
Co-reporter:Nathan A. BruenderTsehai A. J. Grell, Daniel P. Dowling, Reid M. McCarty, Catherine L. Drennan, Vahe Bandarian
Journal of the American Chemical Society 2017 Volume 139(Issue 5) pp:1912-1920
Publication Date(Web):January 3, 2017
DOI:10.1021/jacs.6b11381
Radical S-adenosyl-l-methionine (SAM) enzymes are widely distributed and catalyze diverse reactions. SAM binds to the unique iron atom of a site-differentiated [4Fe-4S] cluster and is reductively cleaved to generate a 5′-deoxyadenosyl radical, which initiates turnover. 7-Carboxy-7-deazaguanine (CDG) synthase (QueE) catalyzes a key step in the biosynthesis of 7-deazapurine containing natural products. 6-Carboxypterin (6-CP), an oxidized analogue of the natural substrate 6-carboxy-5,6,7,8-tetrahydropterin (CPH4), is shown to be an alternate substrate for CDG synthase. Under reducing conditions that would promote the reductive cleavage of SAM, 6-CP is turned over to 6-deoxyadenosylpterin (6-dAP), presumably by radical addition of the 5′-deoxyadenosine followed by oxidative decarboxylation to the product. By contrast, in the absence of the strong reductant, dithionite, the carboxylate of 6-CP is esterified to generate 6-carboxypterin-5′-deoxyadenosyl ester (6-CP-dAdo ester). Structural studies with 6-CP and SAM also reveal electron density consistent with the ester product being formed in crystallo. The differential reactivity of 6-CP under reducing and nonreducing conditions highlights the ability of radical SAM enzymes to carry out both polar and radical transformations in the same active site.
Co-reporter:Nathan A. Bruender and Vahe Bandarian
Biochemistry 2016 Volume 55(Issue 20) pp:2813-2816
Publication Date(Web):May 9, 2016
DOI:10.1021/acs.biochem.6b00355
Ribosomally synthesized post-translationally modified peptides (RiPPs) are encoded in the genomes of a wide variety of microorganisms, in the proximity of open reading frames that encode enzymes that conduct extensive modifications, many of which are novel. Recently, members of the radical S-adenosyl-l-methionine (SAM) superfamily have been identified in these biosynthetic clusters. Herein, we demonstrate the putative radical SAM enzyme, MftC, oxidatively decarboxylates the C-terminus of the MftA peptide in the presence of the accessory protein MftB. The reaction catalyzed by MftC expands the repertoire of peptide-based radical SAM chemistry beyond the intramolecular cross-links.
Co-reporter:Nathan A. Bruender, Jarett Wilcoxen, R. David Britt, and Vahe Bandarian
Biochemistry 2016 Volume 55(Issue 14) pp:2122-2134
Publication Date(Web):March 23, 2016
DOI:10.1021/acs.biochem.6b00145
Peptide-derived natural products are a class of metabolites that afford the producing organism a selective advantage over other organisms in their biological niche. While the polypeptide antibiotics produced by the nonribosomal polypeptide synthetases (NRPS) are the most widely recognized, the ribosomally synthesized and post-translationally modified peptides (RiPPs) are an emerging group of natural products with diverse structures and biological functions. Both the NRPS derived peptides and the RiPPs undergo extensive post-translational modifications to produce structural diversity. Here we report the first characterization of the six cysteines in forty-five (SCIFF) [Haft, D. H. and Basu M. K. (2011) J. Bacteriol. 193, 2745–2755] peptide maturase Tte1186, which is a member of the radical S-adenosyl-l-methionine (SAM) superfamily. Tte1186 catalyzes the formation of a thioether cross-link in the peptide Tte1186a encoded by an orf located upstream of the maturase, under reducing conditions in the presence of SAM. Tte1186 contains three [4Fe-4S] clusters that are indispensable for thioether cross-link formation; however, only one cluster catalyzes the reductive cleavage of SAM. Mechanistic imperatives for the reaction catalyzed by the thioether forming radical SAM maturases will be discussed.
Co-reporter:Nathan A. Bruender and Vahe Bandarian
Biochemistry 2016 Volume 55(Issue 30) pp:4131-4134
Publication Date(Web):July 13, 2016
DOI:10.1021/acs.biochem.6b00598
Sulfur to α-carbon thioether-containing peptides (sactipeptides) are ribosomally synthesized post-translationally modified peptides with bacteriocidal activities. The thioether cross-link, which is required for biological activity, is installed by a member of the radical S-adenosyl-l-methionine (SAM) superfamily in the peptide substrate. Herein, we show that the radical SAM enzyme, SkfB, utilizes the 5′-deoxyadenosyl radical generated from the reductive cleavage of SAM to abstract a hydrogen atom from the α-carbon of the amino acid at position 12 in the substrate, SkfA, to initiate the installation of a thioether cross-link. The insights from this work can be applied to all radical SAM sactipeptide maturases.
Co-reporter:Zachary D. Miles, William K. Myers, William M. Kincannon, R. David Britt, and Vahe Bandarian
Biochemistry 2015 Volume 54(Issue 31) pp:4927-4935
Publication Date(Web):July 31, 2015
DOI:10.1021/acs.biochem.5b00335
Queuosine is a hypermodified nucleoside present in the wobble position of tRNAs with a 5′-GUN-3′ sequence in their anticodon (His, Asp, Asn, and Tyr). The 7-deazapurine core of the base is synthesized de novo in prokaryotes from guanosine 5′-triphosphate in a series of eight sequential enzymatic transformations, the final three occurring on tRNA. Epoxyqueuosine reductase (QueG) catalyzes the final step in the pathway, which entails the two-electron reduction of epoxyqueuosine to form queuosine. Biochemical analyses reveal that this enzyme requires cobalamin and two [4Fe-4S] clusters for catalysis. Spectroscopic studies show that the cobalamin appears to bind in a base-off conformation, whereby the dimethylbenzimidazole moiety of the cofactor is removed from the coordination sphere of the cobalt but not replaced by an imidazole side chain, which is a hallmark of many cobalamin-dependent enzymes. The bioinformatically identified residues are shown to have a role in modulating the primary coordination sphere of cobalamin. These studies provide the first demonstration of the cofactor requirements for QueG.
Adenosin-5'-yl, 5'-deoxy-
Sangivamycin
Deoxyadenosine
Pterin-6-carboxylic acid
7H-Pyrrolo[2,3-d]pyrimidine-5-carbonitrile,4-amino-7-b-D-ribofuranosyl-