Valery Fokin

Find an error

Name:
Organization: The Scripps Research Institute
Department: Department of Chemistry
Title:
Co-reporter:Dr. Sen Wai Kwok;Dr. Li Zhang;Dr. Neil P. Grimster;Dr. Valery V. Fokin
Angewandte Chemie 2014 Volume 126( Issue 13) pp:3520-3524
Publication Date(Web):
DOI:10.1002/ange.201306706

Abstract

A convenient one-pot asymmetric synthesis of 2,3-dihydropyrroles from in situ generated triflated triazoles and olefins is described that further expands the utility of azavinyl carbene chemistry and provides access to an important class of cyclic enamides. Mechanistic investigations support the involvement of triflated cyclopropylaldimine intermediates in the formation of 2,3-dihydropyrrole. To the best of our knowledge, this is the first example of a chiral Brønsted acid catalyzed rearrangement of cyclopropylimines into enantioenriched 2,3-dihydropyrroles.

Co-reporter:Dr. Sen Wai Kwok;Dr. Li Zhang;Dr. Neil P. Grimster;Dr. Valery V. Fokin
Angewandte Chemie International Edition 2014 Volume 53( Issue 13) pp:3452-3456
Publication Date(Web):
DOI:10.1002/anie.201306706

Abstract

A convenient one-pot asymmetric synthesis of 2,3-dihydropyrroles from in situ generated triflated triazoles and olefins is described that further expands the utility of azavinyl carbene chemistry and provides access to an important class of cyclic enamides. Mechanistic investigations support the involvement of triflated cyclopropylaldimine intermediates in the formation of 2,3-dihydropyrrole. To the best of our knowledge, this is the first example of a chiral Brønsted acid catalyzed rearrangement of cyclopropylimines into enantioenriched 2,3-dihydropyrroles.

Co-reporter:Jiajia Dong;K. Barry Sharpless;Luke Kwisnek;James S. Oakdale;Valery V. Fokin
Angewandte Chemie International Edition 2014 Volume 53( Issue 36) pp:9466-9470
Publication Date(Web):
DOI:10.1002/anie.201403758

Abstract

High-molecular-weight polysulfates are readily formed from aromatic bis(silyl ethers) and bis(fluorosulfates) in the presence of a base catalyst. The reaction is fast and proceeds well under neat conditions or in solvents, such as dimethyl formamide or N-methylpyrrolidone, to provide the desired polymers in nearly quantitative yield. These polymers are more resistant to chemical degradation than their polycarbonate analogues and exhibit excellent mechanical, optical, and oxygen-barrier properties.

Co-reporter:James S. Oakdale;Dr. Rakesh K. Sit ;Dr. Valery V. Fokin
Chemistry - A European Journal 2014 Volume 20( Issue 35) pp:11101-11110
Publication Date(Web):
DOI:10.1002/chem.201402559

Abstract

(Cyclopentadienyl)(cyclooctadiene) ruthenium(II) chloride [CpRuCl(cod)] catalyzes the reaction between nitrile oxides and electronically deficient 1-choro-, 1-bromo-, and 1-iodoalkynes leading to 4-haloisoxazoles. Organic azides are also suitable 1,3-dipoles, resulting in 5-halo-1,2,3-triazoles. These air-tolerant reactions can be performed at room temperature with 1.25 equivalents of the respective 1,3-dipole relative to the alkyne component. Reactive 1-haloalkynes include propiolic amides, esters, ketones, and phosphonates. Post-functionalization of the halogenated azole products can be accomplished by using palladium-catalyzed cross-coupling reactions and by manipulation of reactive amide groups. The lack of catalysis observed with [Cp*RuCl(cod)] (Cp*=pentamethylcyclopentadienyl) is attributed to steric demands of the Cp* (η5-C5Me5) ligand in comparison to the parent Cp (η5-C5H5). This hypothesis is supported by the poor reactivity of [(η5-C5Me4CF3)RuCl(cod)], which serves as a an isosteric mimic of Cp* and as an isoelectronic analogue of Cp.

Co-reporter:Stepan Chuprakov ; Sen Wai Kwok ;Valery V. Fokin
Journal of the American Chemical Society 2013 Volume 135(Issue 12) pp:4652-4655
Publication Date(Web):March 11, 2013
DOI:10.1021/ja400350c
Readily available 1-mesyl-1,2,3-triazoles are efficiently converted into a variety of imidazolones and thiazoles by Rh(II)-catalyzed denitrogenative reactions with isocyanates and isothiocyanates, respectively. The proposed triazole–diazoimine equilibrium results in the formation of highly reactive azavinyl metal-carbenes, which react with heterocumulenes causing an apparent swap of 1,2,3-triazole core for another heterocycle.
Co-reporter:Stepan Chuprakov ; Brady T. Worrell ; Nicklas Selander ; Rakesh K. Sit ;Valery V. Fokin
Journal of the American Chemical Society 2013 Volume 136(Issue 1) pp:195-202
Publication Date(Web):December 2, 2013
DOI:10.1021/ja408185c
Rhodium(II) azavinyl carbenes, conveniently generated from 1-sulfonyl-1,2,3-triazoles, undergo a facile, mild, and convergent formal 1,3-insertion into N–H and O–H bonds of primary and secondary amides, various alcohols, and carboxylic acids to afford a wide range of vicinally bisfunctionalized (Z)-olefins with perfect regio- and stereoselectivity. Utilizing the distinctive functionality installed through these reactions, a number of subsequent rearrangements and cyclizations expand the repertoire of valuable organic building blocks constructed by reactions of transition-metal carbene complexes, including α-allenyl ketones and amino-substituted heterocycles.
Co-reporter:B. T. Worrell;J. A. Malik;V. V. Fokin
Science 2013 Volume 340(Issue 6131) pp:457-460
Publication Date(Web):26 Apr 2013
DOI:10.1126/science.1229506

How Copper Clicks

The copper-catalyzed coupling of azides and alkynes has been termed a “click” reaction on account of its efficiency and versatility, but despite its widespread use, the mechanism remains somewhat unclear. Through a series of kinetic and isotopic labeling studies, Worrell et al. (p. 457, published online 4 April) show that, in the case of terminal alkynes (capped at one end by an H atom), two equivalents of copper participate in activating each molecule's reactivity toward azide. Surprisingly, the reaction also appears to proceed through an intermediate in which the two copper centers become equivalent and functionally exchangeable, despite initially coordinating to distinct sites on the alkyne.

Co-reporter:Brady T. Worrell;Dr. Shelby P. Ellery ; Valery V. Fokin
Angewandte Chemie International Edition 2013 Volume 52( Issue 49) pp:13037-13041
Publication Date(Web):
DOI:10.1002/anie.201306192
Co-reporter:Dr. Mikhail Zibinsky ; Valery V. Fokin
Angewandte Chemie International Edition 2013 Volume 52( Issue 5) pp:1507-1510
Publication Date(Web):
DOI:10.1002/anie.201206388
Co-reporter:Dr. Mikhail Zibinsky ; Valery V. Fokin
Angewandte Chemie 2013 Volume 125( Issue 5) pp:1547-1550
Publication Date(Web):
DOI:10.1002/ange.201206388
Co-reporter:Brady T. Worrell;Dr. Shelby P. Ellery ; Valery V. Fokin
Angewandte Chemie 2013 Volume 125( Issue 49) pp:13275-13279
Publication Date(Web):
DOI:10.1002/ange.201306192
Co-reporter:Nicklas Selander ; Brady T. Worrell ; Stepan Chuprakov ; Subash Velaparthi ;Valery V. Fokin
Journal of the American Chemical Society 2012 Volume 134(Issue 36) pp:14670-14673
Publication Date(Web):August 22, 2012
DOI:10.1021/ja3062453
A highly efficient and stereoselective arylation of in situ-generated azavinyl carbenes affording 2,2-diaryl enamines at ambient temperatures has been developed. These transition-metal carbenes are directly produced from readily available and stable 1-sulfonyl-1,2,3-triazoles in the presence of a rhodium carboxylate catalyst. In several cases, the enamines generated in this reaction can be cyclized into substituted indoles employing copper catalysis.
Co-reporter:Nicklas Selander ;Valery V. Fokin
Journal of the American Chemical Society 2012 Volume 134(Issue 5) pp:2477-2480
Publication Date(Web):January 10, 2012
DOI:10.1021/ja210180q
Diazo sulfonylamidines readily undergo enantioselective oxygen transfer from sulfur to carbon atom in the presence of chiral rhodium(II) carboxylates resulting in chiral sulfinylamidines. This unusual asymmetric atom transfer “reduction” occurs rapidly under mild conditions, and sulfinylamidines are obtained in excellent yield.
Co-reporter:Neil P. Grimster ; Bernhard Stump ; Joseph R. Fotsing ; Timo Weide ; Todd T. Talley ; John G. Yamauchi ; Ákos Nemecz ; Choel Kim ; Kwok-Yiu Ho ; K. Barry Sharpless ; Palmer Taylor ;Valery V. Fokin
Journal of the American Chemical Society 2012 Volume 134(Issue 15) pp:6732-6740
Publication Date(Web):March 6, 2012
DOI:10.1021/ja3001858
Nicotinic acetylcholine receptors (nAChRs), which are responsible for mediating key physiological functions, are ubiquitous in the central and peripheral nervous systems. As members of the Cys loop ligand-gated ion channel family, neuronal nAChRs are pentameric, composed of various permutations of α (α2 to α10) and β (β2 to β4) subunits forming functional heteromeric or homomeric receptors. Diversity in nAChR subunit composition complicates the development of selective ligands for specific subtypes, since the five binding sites reside at the subunit interfaces. The acetylcholine binding protein (AChBP), a soluble extracellular domain homologue secreted by mollusks, serves as a general structural surrogate for the nAChRs. In this work, homomeric AChBPs from Lymnaea and Aplysia snails were used as in situ templates for the generation of novel and potent ligands that selectively bind to these proteins. The cycloaddition reaction between building-block azides and alkynes to form stable 1,2,3-triazoles was used to generate the leads. The extent of triazole formation on the AChBP template correlated with the affinity of the triazole product for the nicotinic ligand binding site. Instead of the in situ protein-templated azide–alkyne cycloaddition reaction occurring at a localized, sequestered enzyme active center as previously shown, we demonstrate that the in situ reaction can take place at the subunit interfaces of an oligomeric protein and can thus be used as a tool for identifying novel candidate nAChR ligands. The crystal structure of one of the in situ-formed triazole–AChBP complexes shows binding poses and molecular determinants of interactions predicted from structures of known agonists and antagonists. Hence, the click chemistry approach with an in situ template of a receptor provides a novel synthetic avenue for generating candidate agonists and antagonists for ligand-gated ion channels.
Co-reporter:Brady T. Worrell;Dr. Jason E. Hein ;Dr. Valery V. Fokin
Angewandte Chemie International Edition 2012 Volume 51( Issue 47) pp:11791-11794
Publication Date(Web):
DOI:10.1002/anie.201204979
Co-reporter:Pei Nian Liu, Juan Li, Fu Hai Su, Kun Dong Ju, Li Zhang, Chuan Shi, Herman H. Y. Sung, Ian D. Williams, Valery V. Fokin, Zhenyang Lin, and Guochen Jia
Organometallics 2012 Volume 31(Issue 13) pp:4904-4915
Publication Date(Web):June 26, 2012
DOI:10.1021/om300513w
The catalytic activity of a series of ruthenium complexes lacking cyclopentadienyl ligands has been evaluated for the cycloaddition of terminal alkynes and azides to give selectively 1,4-disubstituted 1,2,3-triazoles. The complex RuH(η2-BH4)(CO)(PCy3)2 was found to be an effective catalyst for the cycloaddition reactions. In the presence of RuH(η2-BH4)(CO)(PCy3)2, primary and secondary azides reacted with a range of terminal alkynes containing various functionalities to selectively produce 1,4-disubstituted 1,2,3-triazoles. The ruthenium-catalyzed azide–alkyne cycloaddition appears to proceed via a Ru–acetylide species as the key intermediate, which undergoes formal cycloaddition with an azide to give a ruthenium triazolide complex. The 1,4-disubstituted 1,2,3-triazole product is generated by metathesis of the triazolide complex with a terminal alkyne. In support of the reaction mechanism, the acetylide complex Ru(C≡CCMe3)2(CO)(PPh3)3 reacts cleanly with benzyl azide to give a ruthenium triazolide complex, which reacts with excess tert-butylacetylene in the presence of PPh3 to give 4-tert-butyl-1-benzyl-1,2,3-triazole and the diacetylide complex Ru(C≡CCMe3)2(CO)(PPh3)3. The mechanism is also supported by DFT calculations.
Co-reporter:Brady T. Worrell;Dr. Jason E. Hein ;Dr. Valery V. Fokin
Angewandte Chemie 2012 Volume 124( Issue 47) pp:11961-11964
Publication Date(Web):
DOI:10.1002/ange.201204979
Co-reporter:Dr. Nicklas Seler;Brady T. Worrell ;Dr. Valery V. Fokin
Angewandte Chemie International Edition 2012 Volume 51( Issue 52) pp:13054-13057
Publication Date(Web):
DOI:10.1002/anie.201207820
Co-reporter:Dr. Nicklas Seler;Brady T. Worrell ;Dr. Valery V. Fokin
Angewandte Chemie 2012 Volume 124( Issue 52) pp:13231-13234
Publication Date(Web):
DOI:10.1002/ange.201207820
Co-reporter:Stepan Chuprakov ; Jamal A. Malik ; Mikhail Zibinsky ;Valery V. Fokin
Journal of the American Chemical Society 2011 Volume 133(Issue 27) pp:10352-10355
Publication Date(Web):May 27, 2011
DOI:10.1021/ja202969z
A highly efficient enantioselective C–H insertion of azavinyl carbenes into unactivated alkanes has been developed. These transition metal carbenes are directly generated from readily available and stable 1-sulfonyl-1,2,3-triazoles in the presence of chiral Rh(II) carboxylates and are used for C–H functionalization of alkanes to access a variety of β-chiral sulfonamides.
Co-reporter:Jeffrey C. Culhane and Valery V. Fokin
Organic Letters 2011 Volume 13(Issue 17) pp:4578-4580
Publication Date(Web):August 3, 2011
DOI:10.1021/ol201705k
Sulfamoyl azides are readily generated from secondary amines and a novel sulfonyl azide transfer agent, 2,3-dimethyl-1H-imidazolium triflate. They react with alkynes in the presence of a CuTC catalyst forming 1-sulfamoyl-1,2,3-triazoles. The latter are shelf-stable progenitors of rhodium azavinyl carbenes, versatile reactive intermediates that, among other reactions, readily and asymmetrically add to olefins.
Co-reporter:Erik Schwartz, Kurt Breitenkamp, and Valery V. Fokin
Macromolecules 2011 Volume 44(Issue 12) pp:4735-4741
Publication Date(Web):June 2, 2011
DOI:10.1021/ma2005469
The step-growth, click polymerization of complementary azide and alkyne-containing monomers to produce polytriazoles (PTAs) has become a versatile and popular method of preparing structurally diverse high molecular weight polymers with a variety of useful functions. We describe here a new class of PTAs that contain 5-iodotriazole linkages prepared by the iodoalkyne version of the copper-catalyzed azide–alkyne cycloaddition (iCuAAC) of an α-azido-ω-iodoalkyne (A–B) monomer. We found this monomer to be highly reactive in the iCuAAC polymerization and show that the resulting poly(5-iodo-1,2,3-triazole) (iodo-PTA) can serve as a useful building block for further postpolymerization derivatization using palladium-catalyzed cross-couplings such as Suzuki and Heck reactions. The parent iodo-PTA and functionalized materials were successfully characterized by various spectroscopic techniques and shown to exhibit a wide range of chemical and thermal properties that are determined by the nature of functionalization at the 5-position of the triazole ring. This data suggests a certain tunability of PTA properties and offers potential for the development of a multitude of useful triazole-based materials based on this postpolymerization functionalization strategy.
Co-reporter:Jason E. Hein and Valery V. Fokin  
Chemical Society Reviews 2010 vol. 39(Issue 4) pp:1302-1315
Publication Date(Web):04 Mar 2010
DOI:10.1039/B904091A
Copper-catalyzed azide–alkyne cycloaddition (CuAAC) is a widely utilized, reliable, and straightforward way for making covalent connections between building blocks containing various functional groups. It has been used in organic synthesis, medicinal chemistry, surface and polymer chemistry, and bioconjugation applications. Despite the apparent simplicity of the reaction, its mechanism involves multiple reversible steps involving coordination complexes of copper(I) acetylides of varying nuclearity. Understanding and controlling these equilibria is of paramount importance for channeling the reaction into the productive catalytic cycle. This tutorial review examines the history of the development of the CuAAC reaction, its key mechanistic aspects, and highlights the features that make it useful to practitioners in different fields of chemical science.
Co-reporter:Neil Grimster ; Li Zhang ;Valery V. Fokin
Journal of the American Chemical Society 2010 Volume 132(Issue 8) pp:2510-2511
Publication Date(Web):February 5, 2010
DOI:10.1021/ja910187s
Highly reactive rhodium(II) N-trifluoromethylsulfonyl azavinyl carbenes are formed in situ from NH-1,2,3-triazoles, triflic anhydride, and rhodium carboxylates. They rapidly and selectively react with olefins, providing cyclopropane carboxaldehydes and 2,3-dihydropyrroles in generally excellent yields and high enantio- and diastereoselectivity.
Co-reporter:Sen W. Kwok, Joseph R. Fotsing, Rebecca J. Fraser, Valentin O. Rodionov, and Valery V. Fokin
Organic Letters 2010 Volume 12(Issue 19) pp:4217-4219
Publication Date(Web):September 8, 2010
DOI:10.1021/ol101568d
1,5-Diarylsubstituted 1,2,3-triazoles are formed in high yield from aryl azides and terminal alkynes in DMSO in the presence of catalytic tetraalkylammonium hydroxide. The reaction is experimentally simple, does not require a transition-metal catalyst, and is not sensitive to atmospheric oxygen and moisture.
Co-reporter:Jessica Raushel and Valery V. Fokin
Organic Letters 2010 Volume 12(Issue 21) pp:4952-4955
Publication Date(Web):October 8, 2010
DOI:10.1021/ol102087r
An efficient room-temperature method for the synthesis of 1-sulfonyl-1,2,3-triazoles from in situ generated copper(I) acetylides and sulfonyl azides is described. The copper(I) thiophene-2-carboxylate (CuTC) catalyst produces the title compounds under both nonbasic anhydrous and aqueous conditions in good yields.
Co-reporter:Timo Weide, S. Adrian Saldanha, Dmitriy Minond, Timothy P. Spicer, Joseph R. Fotsing, Michael Spaargaren, Jean-Marie Frère, Carine Bebrone, K. Barry Sharpless, Peter S. Hodder and Valery V. Fokin
ACS Medicinal Chemistry Letters 2010 Volume 1(Issue 4) pp:150
Publication Date(Web):April 15, 2010
DOI:10.1021/ml900022q
Metallo-β-lactamases (MBLs) are an emerging cause of bacterial resistance to antibiotic treatment. The VIM-2 β-lactamase is the most commonly encountered MBLs in clinical isolates worldwide. Described here are potent and selective small molecule inhibitors of VIM-2 containing the arylsulfonyl-NH-1,2,3-triazole chemotype that potentiate the efficacy of the β-lactam, imipenem, in Escherichia coli.Keywords: bacterial resistance; Escherichia coli; Metallo-β-lactamases; NH-1,2,3-triazole-based inhibitors; VIM-2
Co-reporter:Arani Chanda and Valery V. Fokin
Chemical Reviews 2009 Volume 109(Issue 2) pp:725
Publication Date(Web):February 11, 2009
DOI:10.1021/cr800448q
Co-reporter:Stepan Chuprakov ; Sen Wai Kwok ; Li Zhang ; Lukas Lercher ;Valery V. Fokin
Journal of the American Chemical Society 2009 Volume 131(Issue 50) pp:18034-18035
Publication Date(Web):November 24, 2009
DOI:10.1021/ja908075u
N-Sulfonyl 1,2,3-triazoles readily form rhodium(II) azavinyl carbenes, which react with olefins to produce cyclopropanes with excellent diastereo- and enantioselectivity and in high yield.
Co-reporter:JasonE. Hein Dr.;JonathanC. Tripp Dr.;LarissaB. Krasnova Dr.;K.Barry Sharpless Dr. ;ValeryV. Fokin Dr.
Angewandte Chemie 2009 Volume 121( Issue 43) pp:8162-8165
Publication Date(Web):
DOI:10.1002/ange.200903558
Co-reporter:JasonE. Hein Dr.;JonathanC. Tripp Dr.;LarissaB. Krasnova Dr.;K.Barry Sharpless Dr. ;ValeryV. Fokin Dr.
Angewandte Chemie International Edition 2009 Volume 48( Issue 43) pp:8018-8021
Publication Date(Web):
DOI:10.1002/anie.200903558
Co-reporter:Scott Grecian Dr. ;ValeryV. Fokin Dr.
Angewandte Chemie International Edition 2008 Volume 47( Issue 43) pp:8285-8287
Publication Date(Web):
DOI:10.1002/anie.200801920
Co-reporter:Scott Grecian Dr. ;ValeryV. Fokin Dr.
Angewandte Chemie 2008 Volume 120( Issue 43) pp:8409-8411
Publication Date(Web):
DOI:10.1002/ange.200801920
Co-reporter:Valery V. Fokin
ACS Chemical Biology 2007 Volume 2(Issue 12) pp:775
Publication Date(Web):December 21, 2007
DOI:10.1021/cb700254v
Understanding the function of biomolecules is crucially dependent on observing the dynamics of their biosynthesis, distribution, and metabolism in their native environment at the cellular and organismal levels rather than their behavior in the isolated samples. Small bioorthogonal functional groups that cause minimal, if any, perturbations of the native structure and function of the target molecule under physiological conditions and react selectively with an appropriately derivatized probe could function as chemical handles that allow selective visualization of the target molecule in the complex biological milieu. Small and generally unreactive, organic azides are ideally suited for this task: they can be carried unnoticed through multiple biosynthetic steps only to be revealed, when desired, by action of a suitably derivatized visualization label.
Co-reporter:David D. Díaz;Yi Liu;K. Barry Sharpless;Adrian A. Accurso;M. G. Finn;Valery V. Fokin
Journal of Polymer Science Part A: Polymer Chemistry 2007 Volume 45(Issue 22) pp:5182-5189
Publication Date(Web):1 OCT 2007
DOI:10.1002/pola.22262

1,2,3-Triazole-based polymers generated from the Cu(I)-catalyzed cycloaddition between multivalent azides and acetylenes are effective adhesive materials for metal surfaces. The adhesive capacities of candidate mixtures of azide and alkyne components were measured by a modified peel test, using a customized adhesive tester. A particularly effective tetravalent alkyne and trivalent azide combination was identified, giving exceptional strength that matches or exceeds the best commercial formulations. The addition of Cu catalyst was found to be important for the synthesis of stronger adhesive polymers when cured at room temperature. Heating also accelerated curing rates, but the maximum adhesive strengths achieved at both room temperature and high temperature were the same, suggesting that crosslinking reaches the same advanced point in all cases. Polytriazoles also form adhesives to aluminum, but copper is bound more effectively, presumably because active Cu(I) ions may be leached from the surface to promote crosslinking and adhesion. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5182–5189, 2007

Co-reporter:Eun Jeong Yoo;Mårten Ahlquist;Seok Hwan Kim;Imhyuck Bae Dr.;Valery V. Fokin  Dr.;K. Barry Sharpless  Dr.;Sukbok Chang  Dr.
Angewandte Chemie International Edition 2007 Volume 46(Issue 10) pp:
Publication Date(Web):19 JAN 2007
DOI:10.1002/anie.200604241

4-Substituted 1-(N-sulfonyl)-1,2,3-triazoles are selectively obtained by using the Cu-catalyzed azide–alkyne cycloaddition reaction with sulfonyl azides. Performing the reaction at 0 °C in chloroform in the presence of 2,6-lutidine and CuI as the catalyst effectively prevents the ketenimine pathway and provides convenient access to N-sulfonyltriazoles in good to excellent yields.

Co-reporter:Eun Jeong Yoo;Mårten Ahlquist;Seok Hwan Kim;Imhyuck Bae Dr.;Valery V. Fokin  Dr.;K. Barry Sharpless  Dr.;Sukbok Chang  Dr.
Angewandte Chemie 2007 Volume 119(Issue 10) pp:
Publication Date(Web):19 JAN 2007
DOI:10.1002/ange.200604241

Durch eine kupferkatalysierte Cycloaddition von Alkinen mit Sulfonylaziden werden 4-substituierte 1-(N-Sulfonyl)-1,2,3-triazole selektiv erhalten. Die im Schema gezeigte Umsetzung umgeht den Ketenimin-Reaktionsweg und führt glatt und in guten Ausbeuten zu den N-Sulfonyltriazolen.

Co-reporter:Peng Wu;Robert Hilgraf;Valery V. Fokin
Advanced Synthesis & Catalysis 2006 Volume 348(Issue 9) pp:
Publication Date(Web):28 JUN 2006
DOI:10.1002/adsc.200505252

Two catalytic cycles operate in the osmium-catalyzed olefin dihydroxylation and aminohydroxylation. Slow hydrolysis of the Os(VI) monoglycolate (or monoazaglycolate in aminohydroxylation) intermediate often results in the addition of another molecule of olefin thereby shunting the catalysis into the second catalytic cycle. As a result, both enantio- and chemoselectivity are reduced. A series of new chelating ligands were devised, which force the catalysis into the second cycle while maintaining enantiocontrol in the olefin addition step. Excellent catalytic turnover and moderate to good enantioselectivity were achieved.

Co-reporter:Matthew Whiting Dr.;Valery V. Fokin
Angewandte Chemie 2006 Volume 118(Issue 19) pp:
Publication Date(Web):29 MAR 2006
DOI:10.1002/ange.200503936

Nimm drei für eine selektive Umwandlung: Hochfunktionalisierte Azetidinderivate entstehen bei einer experimentell einfachen, hoch selektiven und unter milden Bedingungen ablaufenden katalytischen Dreikomponentenreaktion mit einfach zugänglichen endständigen Alkinen (siehe Schema). Die Azetidiniminprodukte sind unter vielfältigen Reaktionsbedingungen erstaunlich stabil und lassen sich leicht weiter funktionalisieren.

Co-reporter:Michael P. Cassidy Dr.;Jessica Raushel;Valery V. Fokin
Angewandte Chemie 2006 Volume 118(Issue 19) pp:
Publication Date(Web):29 MAR 2006
DOI:10.1002/ange.200503805

Ein direkter, einfacher und effizienter Weg von endständigen Alkinen zu Amiden ist die Kupfer(I)-katalysierte Reaktion mit Sulfonylaziden (siehe Schema). Bei der Reaktion werden die Kupfer(I)-acetylide in situ erzeugt, und sie kann als formale einstufige oxidative Hydrierung einer Dreifachbindung gesehen werden.

Co-reporter:Matthew Whiting Dr.;John Muldoon Dr.;Ying-Chuan Lin Dr.;Steven M. Silverman;William Lindstrom Dr.;Arthur J. Olson ;Hartmuth C. Kolb ;M. G. Finn ;K. Barry Sharpless ;John H. Elder ;Valery V. Fokin
Angewandte Chemie 2006 Volume 118(Issue 9) pp:
Publication Date(Web):20 JAN 2006
DOI:10.1002/ange.200502161

Zweimal schwach gibt mächtig: Die HIV-1-Protease baut ihren eigenen leistungsfähigen Inhibitor zusammen, indem sie mit einem azid- und einem alkinhaltigen Fragment, die beide schwach binden, die Triazolverknüpfung erzeugt.

Co-reporter:Matthew Whiting, John Muldoon, Ying-Chuan Lin, Steven M. Silverman, William Lindstrom, Arthur J. Olson, Hartmuth C. Kolb, M. G. Finn, K. Barry Sharpless, John H. Elder,Valery V. Fokin
Angewandte Chemie International Edition 2006 45(9) pp:1435-1439
Publication Date(Web):
DOI:10.1002/anie.200502161
Co-reporter:Matthew Whiting,Valery V. Fokin
Angewandte Chemie International Edition 2006 45(19) pp:3157-3161
Publication Date(Web):
DOI:10.1002/anie.200503936
Co-reporter:Michael P. Cassidy, Jessica Raushel,Valery V. Fokin
Angewandte Chemie International Edition 2006 45(19) pp:
Publication Date(Web):
DOI:10.1002/anie.200503805
Co-reporter:Valentin O. Rodionov;Valery V. Fokin ;M. G. Finn
Angewandte Chemie International Edition 2005 Volume 44(Issue 15) pp:
Publication Date(Web):3 FEB 2005
DOI:10.1002/anie.200461496

A powerful engine: The Cu-catalyzed azide–alkyne cycloaddition depends on rapid formation of CuI–acetylide complexes from terminal alkynes 2 and their ability to activate organic azides 1. A kinetics study uncovered a bimolecular dependence on the metal and an unusually fast intramolecular variant of the process. The results suggest the importance of 3 as a reactive intermediate.

Co-reporter:Valentin O. Rodionov;Valery V. Fokin ;M. G. Finn
Angewandte Chemie 2005 Volume 117(Issue 15) pp:
Publication Date(Web):3 FEB 2005
DOI:10.1002/ange.200461496

Ein kräftiger Motor: Die Cu-katalysierte Azid-Alkin-Cycloaddition (siehe Schema) beruht auf der schnellen Bildung von CuI-Acetylid-Komplexen aus terminalen Alkinen 2 und deren Fähigkeit zur Aktivierung organischer Azide 1. Eine kinetische Studie zu dieser Reaktion ergab eine bimolekulare Abhängigkeit vom Metall. Eine ungewöhnlich schnell verlaufende intramolekulare Variante lässt auf eine Kupfer-Triazol-Spezies 3 als reaktives Intermediat schließen.

Co-reporter:Peng Wu;Alina K. Feldman;Anne K. Nugent;Craig J. Hawker Dr.;Arnulf Scheel;Brigitte Voit ;Jeffrey Pyun Dr.;Jean M. J. Fréchet;K. Barry Sharpless ;Valery V. Fokin
Angewandte Chemie International Edition 2004 Volume 43(Issue 30) pp:
Publication Date(Web):20 JUL 2004
DOI:10.1002/anie.200490100
Co-reporter:David D. Díaz;Sreenivas Punna;Philipp Holzer;Andrew K. McPherson;K. Barry Sharpless;Valery V. Fokin;M. G. Finn
Journal of Polymer Science Part A: Polymer Chemistry 2004 Volume 42(Issue 17) pp:4392-4403
Publication Date(Web):28 JUL 2004
DOI:10.1002/pola.20330

The copper(I)-catalyzed cycloaddition reaction between azides and alkynes has been employed to make metal-adhesive materials. Copper and brass surfaces supply the necessary catalytic Cu ions, and thus the polymerization process occurs selectively on these metals in the absence of added catalysts. Alternatively, copper compounds can be added to monomer mixtures and then introduced to reducing metal surfaces such as zinc to initiate polymerization. The resulting materials were found to possess comparable or superior adhesive strength to standard commercial glues, and structure-activity correlations have identified several important properties of the monomers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4392–4403, 2004

Co-reporter:Peng Wu;Alina K. Feldman;Anne K. Nugent;Craig J. Hawker Dr.;Arnulf Scheel;Brigitte Voit ;Jeffrey Pyun Dr.;Jean M. J. Fréchet;K. Barry Sharpless ;Valery V. Fokin
Angewandte Chemie 2004 Volume 116(Issue 30) pp:
Publication Date(Web):20 JUL 2004
DOI:10.1002/ange.200490100
Co-reporter:Peng Wu;Alina K. Feldman;Anne K. Nugent;Craig J. Hawker Dr.;Arnulf Scheel;Brigitte Voit ;Jeffrey Pyun Dr.;Jean M. J. Fréchet;K. Barry Sharpless ;Valery V. Fokin
Angewandte Chemie 2004 Volume 116(Issue 30) pp:
Publication Date(Web):30 JUN 2004
DOI:10.1002/ange.200454078

Komponenten, die Klick machen: Eine Vielzahl unterschiedlicher Dendrimere (siehe Schema) wurde mit der im Titel beschriebenen Click-Chemie-Umwandlung nahezu quantitativ erhalten. In einigen Fällen war zur Reinigung der Produkte dieses hoch effizienten Aufbaus der Triazoleinheiten der Dendrimere nur eine Filtration oder Lösungsmittelextraktion erforderlich.

Co-reporter:Peng Wu;Alina K. Feldman;Anne K. Nugent;Craig J. Hawker Dr.;Arnulf Scheel;Brigitte Voit ;Jeffrey Pyun Dr.;Jean M. J. Fréchet;K. Barry Sharpless ;Valery V. Fokin
Angewandte Chemie International Edition 2004 Volume 43(Issue 30) pp:
Publication Date(Web):30 JUN 2004
DOI:10.1002/anie.200454078

Components that click: A large number of diverse dendrimers (see scheme) was prepared in almost quantitative yield by the click-chemistry transformation described in the title. In some cases filtration or solvent extraction was the only method required for purification in this highly efficient construction of the triazole units of the dendrimers.

Co-reporter:Ashraf Brik Dr.;John Muldoon Dr.;Ying-Chuan Lin Dr.;John H. Elder ;David S. Goodsell ;Arthur J. Olson ;Valery V. Fokin ;K. Bary Sharpless ;Chi-Huey Wong
ChemBioChem 2003 Volume 4(Issue 11) pp:
Publication Date(Web):3 NOV 2003
DOI:10.1002/cbic.200300724

Click and go: By using click chemistry based on a new triazole forming reaction condition (see scheme), over 100 triazole compounds generated in microtiter plates from a core structure were screened for HIV protease inhibition in situ without product isolation. Potent inhibitors, active at nanomolar concentrations, against the wild type and drug resistant mutants were identified.

Co-reporter:Philippe Dupau;Robert Epple;Allen A. Thomas;Valery V. Fokin;K. Barry Sharpless
Advanced Synthesis & Catalysis 2002 Volume 344(Issue 3-4) pp:
Publication Date(Web):13 JUN 2002
DOI:10.1002/1615-4169(200206)344:3/4<421::AID-ADSC421>3.0.CO;2-F

A screen of over 500 diversely functionalized additives in osmium-catalyzed dihydroxylation has uncovered that electron-deficient olefins are converted into the corresponding diols much more efficiently when the pH of the reaction medium is maintained on the acidic side. Further studies have identified citric acid as the additive of choice, for it allows preparation of very pure diols in yields generally exceeding 90%. As described here, a much wider range of olefin classes can now be successfully dihydroxylated. The process is experimentally simple, in most cases involving little more than dissolving the reactants in water or a water/tert-butyl alcohol mixture, stirring them, and filtering off the pure diol product.

Co-reporter:Malin A. Andersson Dr.;Robert Epple Dr.;Valery V. Fokin ;K. Barry Sharpless
Angewandte Chemie 2002 Volume 114(Issue 3) pp:
Publication Date(Web):29 JAN 2002
DOI:10.1002/1521-3757(20020201)114:3<490::AID-ANGE490>3.0.CO;2-M

Hydroxyaminosäure-Derivate dienen als chirale Liganden bei der hier vorgestellten Methode zur osmiumkatalysierten Dihydroxylierung und Aminohydroxylierung von Olefinen (siehe Schema). Dies sind die ersten asymmetrischen osmiumkatalysierten Prozesse, bei denen im zweiten Katalysezyklus ein Ligand permanent am Metallzentrum verbleibt.

Co-reporter:Vsevolod V. Rostovtsev Dr.;Luke G. Green Dr.;Valery V. Fokin ;K. Barry Sharpless
Angewandte Chemie International Edition 2002 Volume 41(Issue 14) pp:
Publication Date(Web):15 JUL 2002
DOI:10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4

By simply stirring in water, organic azides and terminal alkynes are readily and cleanly converted into 1,4-disubstituted 1,2,3-triazoles through a highly efficient and regioselective copper(I)-catalyzed process (see scheme for an example).

Co-reporter:Malin A. Andersson Dr.;Robert Epple Dr.;Valery V. Fokin ;K. Barry Sharpless
Angewandte Chemie International Edition 2002 Volume 41(Issue 3) pp:
Publication Date(Web):29 JAN 2002
DOI:10.1002/1521-3773(20020201)41:3<472::AID-ANIE472>3.0.CO;2-7

Simple hydroxyamino acid derivatives act as chiral ligands in osmium-catalyzed dihydroxylation and aminohydroxylation of olefins (see scheme). These are the first examples of asymmetric osmium-catalyzed processes proceeding in the second catalytic cycle with resident ligands on the metal center.

Co-reporter:Valery V. Fokin ;K. Barry Sharpless
Angewandte Chemie 2001 Volume 113(Issue 18) pp:
Publication Date(Web):14 SEP 2001
DOI:10.1002/1521-3757(20010917)113:18<3563::AID-ANGE3563>3.0.CO;2-I

In Wasser und ohne irgendwelche Liganden lassen sich Salze ungesättigter Carbonsäuren durch Aminohydroxylierung einfach und sauber in hoher Ausbeute in vicinale Hydroxyaminosäure-Derivate überführen (siehe Schema).

Co-reporter:Valery V. Fokin ;K. Barry Sharpless
Angewandte Chemie International Edition 2001 Volume 40(Issue 18) pp:
Publication Date(Web):14 SEP 2001
DOI:10.1002/1521-3773(20010917)40:18<3455::AID-ANIE3455>3.0.CO;2-I

In water and in the absence of any ligands, salts of unsaturated carboxylic acids are readily and cleanly aminohydroxylated to provide vicinal hydroxyamino acid derivatives in high yields (see scheme).

Co-reporter:Jason E. Hein and Valery V. Fokin
Chemical Society Reviews 2010 - vol. 39(Issue 4) pp:NaN1315-1315
Publication Date(Web):2010/03/04
DOI:10.1039/B904091A
Copper-catalyzed azide–alkyne cycloaddition (CuAAC) is a widely utilized, reliable, and straightforward way for making covalent connections between building blocks containing various functional groups. It has been used in organic synthesis, medicinal chemistry, surface and polymer chemistry, and bioconjugation applications. Despite the apparent simplicity of the reaction, its mechanism involves multiple reversible steps involving coordination complexes of copper(I) acetylides of varying nuclearity. Understanding and controlling these equilibria is of paramount importance for channeling the reaction into the productive catalytic cycle. This tutorial review examines the history of the development of the CuAAC reaction, its key mechanistic aspects, and highlights the features that make it useful to practitioners in different fields of chemical science.
Carbamic acid, N-[2-[(4-O-β-D-galactopyranosyl-β-D-glucopyranosyl)oxy]ethyl]-, phenylmethyl ester
3,5-Dimethyl-4-fluorobenzoyl chloride
1H-1,2,3-Triazole-4-methanamine, 1-(1,1-dimethylethyl)-N,N-bis[[1-(1,1-dimethylethyl)-1H-1,2,3-triazol-4-yl]methyl]-
Dinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin,2,6-bis[3,5-bis(trifluoromethyl)phenyl]-4-hydroxy-, 4-oxide, (11bR)-
1,3,5-Benzenetricarboxylic acid, 2,4,6-tribromo-, trimethyl ester
1H-1,2,3-Triazole, 4-[4-(trifluoromethyl)phenyl]-
1-Butanol, 4-azido-, 1-methanesulfonate
1H-Imidazole-2-carboxaldehyde, 1-(3-phenylpropyl)-