Co-reporter:Patrick M. M. Shelton, Caroline E. Weller, and Champak Chatterjee
Journal of the American Chemical Society March 22, 2017 Volume 139(Issue 11) pp:3946-3946
Publication Date(Web):February 23, 2017
DOI:10.1021/jacs.6b13271
The C-terminal electrophilic activation of peptides by α-thioesterification requires strongly acidic conditions or complex chemical manipulations, which ultimately limit functional group compatibility and broad utility. Herein, we report a readily accessible N-mercaptoethoxyglycinamide (MEGA) solid-phase linker for the facile synthesis of latent peptide α-thioesters. Incubating peptide-MEGA sequences with 2-mercaptoethanesulfonic acid at mildly acidic pH yielded α-thioesters that were directly used in NCL without purification. The MEGA linker yielded robust access to thioesters ranging in length from 4 to 35 amino acids, and greatly simplified the synthesis of cyclic peptides. Finally, the high utility of MEGA was demonstrated by the one-pot synthesis of a functional analog of the Sunflower Trypsin Inhibitor 1.
Co-reporter:Samuel D. Whedon, Nagula Markandeya, Ambar S. J. B. Rana, Nicholas A. Senger, Caroline E. Weller, Frantisek Tureček, Eric R. Strieter, and Champak Chatterjee
Journal of the American Chemical Society 2016 Volume 138(Issue 42) pp:13774-13777
Publication Date(Web):October 10, 2016
DOI:10.1021/jacs.6b05688
Deubiquitylating enzymes (DUBs) remove ubiquitin (Ub) from various cellular proteins and render eukaryotic ubiquitylation a dynamic process. The misregulation of protein ubiquitylation is associated with many human diseases, and there is an urgent need to identify specific DUBs associated with therapeutically relevant targets of Ub. We report the development of two facile selenocysteine-based strategies to generate the DUB probe dehydroalanine (Dha). Optimized oxidative or alkylative elimination of Se yielded Dha at the C-terminus of Ub. The high utility of alkylative elimination, which is compatible with multiple thiols in Ub targets, was demonstrated by generating a probe derived from the Ub ligase tripartite motif protein 25 (TRIM-25). Successful capture of the TRIM-25-associated DUB, ubiquitin-specific protease 15, demonstrated the versatility of our chemical strategy for identifying target-specific DUBs.
Co-reporter:Ian C. Eustis, Jessica Huang, Meagan E. Pilkerton, Samuel D. Whedon, Champak Chatterjee
Analytical Biochemistry 2015 Volume 487() pp:27-29
Publication Date(Web):15 October 2015
DOI:10.1016/j.ab.2015.07.003
Abstract
The modification of proteins in Mycobacterium tuberculosis (Mtb) by the prokaryotic ubiquitin-like protein (Pup) targets them for degradation by mycobacterial proteasomes. Although functionally similar to eukaryotic deubiquitylating enzymes, the deamidase of Pup, called Dop, has no known mammalian homologs. Because Dop is necessary for persistent infection by Mtb, its selective inhibition holds potential for tuberculosis therapy. To facilitate high-throughput screens for Dop inhibitors, we developed a time-resolved Förster resonance energy transfer (TR–FRET)-based assay for Dop function. The TR–FRET assay was successfully applied to determine the Michaelis constant for adenosine triphosphate (ATP) binding and to test the cofactor tolerance of Dop.
Co-reporter:Caroline E. Weller;Wei Huang ; Dr. Champak Chatterjee
ChemBioChem 2014 Volume 15( Issue 9) pp:1263-1267
Publication Date(Web):
DOI:10.1002/cbic.201402135
Abstract
The reversible post-translational modification of eukaryotic proteins by ubiquitin regulates key cellular processes including protein degradation and gene transcription. Studies of the mechanistic roles for protein ubiquitylation require quantities of homogenously modified substrates that are typically inaccessible from natural sources or by enzymatic ubiquitylation in vitro. Therefore, we developed a facile and scalable methodology for site-specific chemical ubiquitylation. Our semisynthetic strategy utilized a temporary ligation auxiliary, 2-(aminooxy)ethanethiol, to direct ubiquitylation to specific lysine residues in peptide substrates. Mild reductive removal of the auxiliary after ligation yielded ubiquitylated peptides with the native isopeptide linkage. Alternatively, retention of the ligation auxiliary yielded protease-resistant analogues of ubiquitylated peptides. Importantly, our strategy was fully compatible with the presence of protein thiol groups, as demonstrated by the synthesis of peptides modified by the human small ubiquitin-related modifier 3 protein.
Co-reporter:Caroline E. Weller;Meagan E. Pilkerton
Biopolymers 2014 Volume 101( Issue 2) pp:144-155
Publication Date(Web):
DOI:10.1002/bip.22253
ABSTRACT
Ubiquitin (Ub) is a small 76 amino acid long protein that is highly conserved in all eukaryotes studied to date. In humans, more than 600 ligases are involved in the reversible modification of specific lysine side-chain amines in substrate proteins by conjugation with the C-terminal carboxylate of Ub. Initially monoubiquitylated proteins can undergo repetitive ubiquitylation starting from one of seven lysine residues or the α-amine in the first Ub to generate a variety of polyUb chains with different topologies and functions. The most well known role for protein ubiquitylation is in targeting substrates for proteolytic destruction by 26S proteasomes. However, a growing body of evidence indicates that both mono- and polyubiquitylation play proteasome-independent roles in modulating the structure, function, and localization of protein substrates. Understanding the complexity of Ub-mediated functions in our cells is a major challenge for modern biology. In addition to well-established in vivo genetic methods, biochemical and biophysical investigations of ubiquitylated proteins in vitro can shed light on the direct mechanistic roles for Ub in different contexts. Such studies have traditionally been limited by the ability to obtain sufficient quantities of homogenously ubiquitylated proteins with precisely defined linkages. This review focuses on recent advances in both synthetic and recombinant protein-based methods that have yielded access to homogenously site-specifically ubiquitylated proteins. Mechanistic studies of the roles for protein ubiquitylation and of the enzymes involved in protein deubiquitylation that are enabled by these chemical tools are highlighted. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 144–155, 2014.
Co-reporter:Denis Smirnov ; Abhinav Dhall ; Kalkena Sivanesam ; Rudy J. Sharar
Journal of the American Chemical Society 2013 Volume 135(Issue 8) pp:2887-2890
Publication Date(Web):February 12, 2013
DOI:10.1021/ja311376h
The prokaryotic ubiquitin-like protein (Pup)-based proteasomal system in the pathogen Mycobacterium tuberculosis (Mtb) is essential for its survival in a mammalian host. The Pup ligase enzyme, PafA, conjugates Pup to a suite of proteins targeted for proteasomal degradation and is necessary for persistent infection by Mtb. We report the design and application of fluorescent probes for use in elucidating the mechanisms of Pup and substrate recognition by PafA. Our studies revealed that the C-terminal 26 amino acid sequence of Pup is the minimal ligase recognition motif in Mtb. Specific hydrophobic residues within this sequence that are known to be important for the interactions of Pup with proteasomes are also critical for the activation of Pup by PafA.
Co-reporter:Abhinav Dhall and Champak Chatterjee
ACS Chemical Biology 2011 Volume 6(Issue 10) pp:987
Publication Date(Web):August 9, 2011
DOI:10.1021/cb200142c
Genomic DNA in the eukaryotic cell nucleus is present in the form of chromatin. Histones are the principal protein component of chromatin, and their post-translational modifications play important roles in regulating the structure and function of chromatin and thereby in determining cell development and disease. An understanding of how histone modifications translate into downstream cellular events is important from both developmental and therapeutic perspectives. However, biochemical studies of histone modifications require access to quantities of homogenously modified histones that cannot be easily isolated from natural sources or generated by enzymatic methods. In the past decade, chemical synthesis has proven to be a powerful tool in translating the language of histone modifications by providing access to uniformly modified histones and by the development of stable analogues of thermodynamically labile modifications. This Review highlights the various synthetic and semisynthetic strategies that have enabled biochemical and biophysical characterization of site-specifically modified histones.