Twenty-seven 1,5-disubstituted-pyridin-2(1H)-one derivatives were synthesized and evaluated for their anti-cancer and anti-fibrosis activity by A549 and NIH3T3 cell viability assays, respectively. To study the selectivity between the cancer and fibrosis cell lines, pharmacophore models (F1–F4) were built in advance for compounds with pyridin-2(1H)-one scaffold, which revealed the relationship between the occupation of the aromatic sub-site F4 and potent anti-cancer activity. The relationship between structure and anti-cancer activity for all target compounds is also reported herein: 1-Phenyl-5-((m-tolylamino)methyl)pyridine-2(1H)-one (22) displayed both potency and selectivity (IC50 = 0.13 mM) toward the A549 cell line through the inhibition of translation initiation, especially by eIF3a suppression, and can be treated as a lead for the design of novel eIF3a regulators and anti-lung cancer agents.
In order to increase the intestinal permeability of valsartan, 14 esters and peptide derivatives of valsartan were chemically synthesized and their absorption characteristics were described. All derivatives were stable and could be better absorbed into the small intestine than valsartan. There are two barriers for the absorption of valsartan derivatives. The elongated half-life (t1/2) and stable blood concentrations for compound 4 due to the hydrolysis of the ester group in the second barrier were demonstrated in pharmacokinetic experiments. Furthermore, compound 4 also displayed modest anti-hypertension activity in vivo, which makes structural modification of valsartan, especially for the purpose of improvement of its intestinal permeability, valuable for further studies.