Nita Sahai

Find an error

Name: Sahai, Nita
Organization: University of Akron , USA
Department: Department of Polymer Science
Title: Professor(PhD)

TOPICS

Co-reporter:Weilong Zhao, Zhijun Xu, Yang Yang, and Nita Sahai
Langmuir November 11, 2014 Volume 30(Issue 44) pp:13283-13292
Publication Date(Web):October 14, 2014
DOI:10.1021/la503158p
Face-specific interfacial energies and structures of water at ionic crystal surfaces play a dominant role in a wide range of biological, environmental, technological, and industrial processes. Nanosized, plate-shaped crystals of calcium phosphate (CaP) with nonideal stoichiometry of hydroxyapatite (HAP, ideal stoichiometry Ca10(PO4)6(OH)2) comprise the inorganic component of bone and dentin. The crystal shape and size contribute significantly to these tissues’ biomechanical properties. Plate-shaped HAP can be grown in the presence of biomolecules, whereas inorganically grown HAP crystals have a needlelike shape. Crystal morphology reflects the relative surface areas of the faces and, for an ideal inorganically grown crystal, should be governed by the surface energies of the faces with water. Interfacial energies and dynamics also affect biomolecule adsorption. Obtaining face-specific surface energies remains experimentally challenging because of the difficulty in growing large HAP single crystals. Here we employed molecular dynamics (MD) simulations to determine nanocrystalline HAP–water interfacial energies. The (100) face was found to be the most favorable energetically, and (110) and (004) were less hydrophilic. The trend in increasing interfacial energy was accompanied by a decrease in the average coordination number of water oxygen to surface calcium ions. The atomic-level geometry of the faces influenced interfacial energy by limiting lateral diffusion of water and by interrupting the hydrogen bond network. Such unfavorable interactions were limited on (100) compared to the other faces. These results provide a thermodynamic basis for the empirically observed trends in relative surface areas of HAP faces. The penetration of charged biomolecules through the interfacial water to form direct interactions with HAP faces, thus potentially influencing morphology, can also be rationalized.
Co-reporter:Ziqiu Wang, Zhijun Xu, Weilong Zhao, Wei Chen, Toshikazu Miyoshi, and Nita Sahai
ACS Applied Materials & Interfaces 2016 Volume 8(Issue 41) pp:28116
Publication Date(Web):September 5, 2016
DOI:10.1021/acsami.6b04822
The superior biomechanical properties of bone and dentin are dictated, in part, by the unique plate-like morphology of hydroxyapatite (HAP) nanocrysals within a hierarchically assembled collagen matrix. Understanding the mechanism of crystal growth and thus morphology is important to the rational design of bioinspired apatite nanocrystals for orthopedic and dental applications. Citrate has long been proposed to modulate apatite crystal growth, but major questions exist regarding the HAP-bound citrate conformations and the identities of the interacting functional groups and HAP surface sites. Here, we conducted a comprehensive investigation of the mechanism from the angstrom to submicrometer scale by detailed correlation of the results of high-level metadynamics simulations, employing force-fields benchmarked to experiment and density functional theory calculations with the results of high resolution transmission electron microscopy, nuclear magnetic resonance spectroscopy, solution analysis, and thermogravimetric analysis. Crystal morphology changed from needle- to plate-like with increasing citrate concentration. Citrate adsorbed more strongly on the HAP (100) face than on the (001) face, thus resulting in preferential growth in the [001] direction and the plate-like morphology. Two very different bound conformations were obtained, involving interactions of either one or both terminal carboxyl groups with three or five surface calcium ions, respectively, and a hydrogen bond between the citrate hydroxyl and the HAP surface. Remarkably, despite fewer interaction sites in the single bound carboxyl conformation, the structures were isoexergonic, so both exist at equilibrium. Identification of the former conformation is significant because it allows a greater adsorption density than is traditionally assumed and can help explain concentration-dependence of citrate in modulating crystal morphology. These unique results were enabled first by the application of advanced metadynamics, a technique necessary for the accurate simulation of ionic materials but which is rarely employed in the biomaterials and biomineralization fields and second by the detailed correlation of computational, spectroscopic, and analytical results.Keywords: biomineralization; citrate; crystal growth; hydroxyapatite; metadynamics; morphology modification; orthopedic materials; surface conformation
Co-reporter:Xianfeng Zhou, Fouad M. Moussa, Steven Mankoci, Putu Ustriyana, Nianli Zhang, Samir Abdelmagid, Jim Molenda, William L. Murphy, Fayez F. Safadi, Nita Sahai
Acta Biomaterialia 2016 Volume 39() pp:192-202
Publication Date(Web):15 July 2016
DOI:10.1016/j.actbio.2016.05.007

Abstract

Accumulating evidence over the last 40 years suggests that silicate from dietary as well as silicate-containing biomaterials is beneficial to bone formation. However, the exact biological role(s) of silicate on bone cells are still unclear and controversial. Here, we report that orthosilicic acid (Si(OH)4) stimulated human mesenchymal stem cells (hMSCs) osteoblastic differentiation in vitro. To elucidate the possible molecular mechanisms, differential microRNA microarray analysis was used to show that Si(OH)4 significantly up-regulated microRNA-146a (miR-146a) expression during hMSC osteogenic differentiation. Si(OH)4 induced miR-146a expression profiling was further validated by quantitative RT-PCR (qRT-PCR), which indicated miR-146a was up-regulated during the late stages of hMSC osteogenic differentiation. Inhibition of miR-146a function by anti-miR-146a suppressed osteogenic differentiation of MC3T3 pre-osteoblasts, whereas Si(OH)4 treatment promoted osteoblast-specific genes transcription, alkaline phosphatase (ALP) production, and mineralization. Furthermore, luciferase reporter assay, Western blotting, enzyme-linked immunosorbent assay (ELISA), and immunofluorescence showed that Si(OH)4 decreased TNFα-induced activation of NF-κB, a signal transduction pathway that inhibits osteoblastic bone formation, through the known miR-146a negative feedback loop. Our studies established a mechanism for Si(OH)4 to promote osteogenesis by antagonizing NF-κB activation via miR-146a, which might be interesting to guide the design of osteo-inductive biomaterials for treatments of bone defects in humans.

Statement of Significance

Accumulating evidence over 40 years suggests that silicate is beneficial to bone formation. However, the biological role(s) of silicate on bone cells are still unclear and controversial. Here, we report that Si(OH)4, the simplest form of silicate, can stimulate human mesenchymal stem cells osteoblastic differentiation. We identified that miR-146a is the expression signature in bone cells treated with Si(OH)4. Further analysis of miR-146a in bone cells reveals that Si(OH)4 upregulates miR-146a to antagonize the activation of NF-κB. Si(OH)4 was also shown to deactivate the same NF-κB pathway to suppress osteoclast formation. Our findings are important to the development of third-generation cell-and gene affecting biomaterials, and suggest silicate and miR-146a can be used as pharmaceuticals for bone fracture prevention and therapy.

Co-reporter:Weilong Zhao, Zhijun Xu, Qiang Cui, and Nita Sahai
Langmuir 2016 Volume 32(Issue 27) pp:7009-7022
Publication Date(Web):June 21, 2016
DOI:10.1021/acs.langmuir.6b01582
Understanding the molecular structural and energetic basis of the interactions between peptides and inorganic surfaces is critical to their applications in tissue engineering and biomimetic material synthesis. Despite recent experimental progresses in the identification and functionalization of hydroxyapatite (HAP)-binding peptides, the molecular mechanisms of their interactions with HAP surfaces are yet to be explored. In particular, the traditional method of molecular dynamics (MD) simulation suffers from insufficient sampling at the peptide–inorganic interface that renders the molecular-level observation dubious. Here we demonstrate that an integrated approach combining bioinformatics, MD, and metadynamics provides a powerful tool for investigating the structure–activity relationship of HAP-binding peptides. Four low charge density peptides, previously identified by phage display, have been considered. As revealed by bioinformatics and MD, the binding conformation of the peptides is controlled by both the sequence and the amino acid composition. It was found that formation of hydrogen bonds between lysine residue and phosphate ions on the surface dictates the binding of positively charged peptide to HAP. The binding affinities of the peptides to the surface are estimated by free energy calculation using parallel-tempering metadynamics, and the results compare favorably to measurements reported in previous experimental studies. The calculation suggests that the charge density of the peptide primarily controls the binding affinity to the surface, while the backbone secondary structure that may restrain side chain orientation toward the surface plays a minor role. We also report that the application of enhanced-sampling metadynamics effects a major advantage over the steered MD method by significantly improving the reliability of binding free energy calculation. In general, our novel integration of diverse sampling techniques should contribute to the rational design of surface-recognition peptides in biomedical applications.
Co-reporter:Ziqiu Wang, Zhijun Xu, Weilong Zhao and Nita Sahai  
Journal of Materials Chemistry A 2015 vol. 3(Issue 47) pp:9157-9167
Publication Date(Web):30 Oct 2015
DOI:10.1039/C5TB01036E
The mineral component of bone, dentin and calcified parts of avian tendon, hydroxyapatite (HAP), has non-stoichiometric composition (idealized as Ca10(PO4)6(OH)2), plate-like morphology and nanometer size. This unique crystal morphology contributes to the physico-chemical and biochemical properties of bone. Thus, understanding the mechanism for the controlled growth of plate-like HAP nanocrystals is significant in the study of bone biomineralization. Previous studies have shown that acidic non-collagenous proteins (ANCPs), which are enriched in the residues of acidic amino acids, may play an important role in HAP crystal growth modulation. In this study, glutamic acid (Glu) and phosphoserine (Ser-OPO3) were used as model compounds to modify the synthesis of HAP nanocrystals. To identify the mechanisms of amino acids as regulators, X-ray diffraction (XRD), transmission electron microscopy (TEM) and solid state nuclear magnetic resonance (ssNMR) were used. The crystals obtained in the inorganic controls were needle-like, while crystals synthesized in the presence of the amino acids presented a plate-like morphology. The plate-like crystals had a preferred crystal orientation on (300) face, which was lacking in the inorganically grown crystals, indicating preferential adsorption and suppression of growth in specific crystal directions. Ser-OPO3 was more efficient than Glu in modulating HAP nucleation and crystal growth. Furthermore, NMR revealed interactions between the charged side chain groups in amino acids and the crystal surfaces. These results were successfully explained through our MD simulations for the free energy calculation of amino acid binding on HAP crystal faces. The present study revealed that amino acids may act as effective regulators of HAP morphology without the need to invoke large NCPs in bone biomineralization and in designing bioinspired materials for orthopaedic and dental applications.
Co-reporter:Zhijun Xu, Yang Yang, Weilong Zhao, Ziqiu Wang, William J. Landis, Qiang Cui, Nita Sahai
Biomaterials 2015 39() pp: 59-66
Publication Date(Web):
DOI:10.1016/j.biomaterials.2014.10.048
Co-reporter:Xianfeng Zhou, Nita Sahai, Lin Qi, Steven Mankoci, Weilong Zhao
Biomaterials 2015 50() pp: 1-9
Publication Date(Web):May 2015
DOI:10.1016/j.biomaterials.2015.01.024
Co-reporter:Weilong Zhao, Zhijun Xu, Yang Yang, and Nita Sahai
Langmuir 2014 Volume 30(Issue 44) pp:13283-13292
Publication Date(Web):October 14, 2014
DOI:10.1021/la503158p
Face-specific interfacial energies and structures of water at ionic crystal surfaces play a dominant role in a wide range of biological, environmental, technological, and industrial processes. Nanosized, plate-shaped crystals of calcium phosphate (CaP) with nonideal stoichiometry of hydroxyapatite (HAP, ideal stoichiometry Ca10(PO4)6(OH)2) comprise the inorganic component of bone and dentin. The crystal shape and size contribute significantly to these tissues’ biomechanical properties. Plate-shaped HAP can be grown in the presence of biomolecules, whereas inorganically grown HAP crystals have a needlelike shape. Crystal morphology reflects the relative surface areas of the faces and, for an ideal inorganically grown crystal, should be governed by the surface energies of the faces with water. Interfacial energies and dynamics also affect biomolecule adsorption. Obtaining face-specific surface energies remains experimentally challenging because of the difficulty in growing large HAP single crystals. Here we employed molecular dynamics (MD) simulations to determine nanocrystalline HAP–water interfacial energies. The (100) face was found to be the most favorable energetically, and (110) and (004) were less hydrophilic. The trend in increasing interfacial energy was accompanied by a decrease in the average coordination number of water oxygen to surface calcium ions. The atomic-level geometry of the faces influenced interfacial energy by limiting lateral diffusion of water and by interrupting the hydrogen bond network. Such unfavorable interactions were limited on (100) compared to the other faces. These results provide a thermodynamic basis for the empirically observed trends in relative surface areas of HAP faces. The penetration of charged biomolecules through the interfacial water to form direct interactions with HAP faces, thus potentially influencing morphology, can also be rationalized.
Co-reporter:Nianli Zhang, James A. Molenda, Steven Mankoci, Xianfeng Zhou, William L. Murphy and Nita Sahai  
Biomaterials Science 2013 vol. 1(Issue 10) pp:1101-1110
Publication Date(Web):18 Jul 2013
DOI:10.1039/C3BM60034C
The repair and replacement of damaged or diseased human bone tissue requires a stable interface between the orthopedic implant and living tissue. The ideal material should be both osteoconductive (promote bonding to bone) and osteoinductive (induce osteogenic differentiation of cells and generate new bone). Partially resorbable bioceramic materials with both properties are developed by expensive trial-and-error methods. Structure–reactivity relationships for predicting the osteoinductive properties of ceramics would significantly increase the efficiency of developing materials for bone tissue engineering. Here we propose the novel hypothesis that the crystal structure of a bioceramic controls the release rates, subsequent surface modifications due to precipitation of new phases, and thus, the concentrations of soluble factors, and ultimately, the attachment, viability and osteogenic differentiation of human Mesenchymal Stem Cells (hMSCs). To illustrate our hypothesis, we used two CaSiO3 polymorphs, pseudowollastonite (psw, β-CaSiO3) and wollastonite (wol, α-CaSiO3) as scaffolds for hMSC culture. Polymorphs are materials which have identical chemical composition and stoichiometry, but different crystal structures. We combined the results of detailed surface characterizations, including environmental Scanning Electron Microscopy (SEM) back-scattered imaging, and spot-analysis and 2D elemental mapping by SEM-Energy Dispersive X-ray (SEM-EDX), High Resolution Transmission Electron Microscopy (HRTEM) and surface roughness analysis; culture medium solution analyses; and molecular/genetic assays from cell culture. Our results confirmed the hypothesis that the psw polymorph, which has a strained silicate ring structure, is more osteoinductive than the wol polymorph, which has a more stable, open silicate chain structure. The observations could be attributed to easier dissolution (resorption) of psw compared to wol, which resulted in concentration profiles that were more osteoinductive for the former. Thus, we showed that crystal structure is a fundamental parameter to be considered in the intelligent design of pro-osteogenic, partially resorbable bioceramics.
Co-reporter:Frederick V. Coville
Science 1919 Vol 50(1280) pp:30-34
Publication Date(Web):11 Jul 1919
DOI:10.1126/science.50.1280.30
Co-reporter:Nianli Zhang, James A. Molenda, Steven Mankoci, Xianfeng Zhou, William L. Murphy and Nita Sahai
Biomaterials Science (2013-Present) 2013 - vol. 1(Issue 10) pp:NaN1110-1110
Publication Date(Web):2013/07/18
DOI:10.1039/C3BM60034C
The repair and replacement of damaged or diseased human bone tissue requires a stable interface between the orthopedic implant and living tissue. The ideal material should be both osteoconductive (promote bonding to bone) and osteoinductive (induce osteogenic differentiation of cells and generate new bone). Partially resorbable bioceramic materials with both properties are developed by expensive trial-and-error methods. Structure–reactivity relationships for predicting the osteoinductive properties of ceramics would significantly increase the efficiency of developing materials for bone tissue engineering. Here we propose the novel hypothesis that the crystal structure of a bioceramic controls the release rates, subsequent surface modifications due to precipitation of new phases, and thus, the concentrations of soluble factors, and ultimately, the attachment, viability and osteogenic differentiation of human Mesenchymal Stem Cells (hMSCs). To illustrate our hypothesis, we used two CaSiO3 polymorphs, pseudowollastonite (psw, β-CaSiO3) and wollastonite (wol, α-CaSiO3) as scaffolds for hMSC culture. Polymorphs are materials which have identical chemical composition and stoichiometry, but different crystal structures. We combined the results of detailed surface characterizations, including environmental Scanning Electron Microscopy (SEM) back-scattered imaging, and spot-analysis and 2D elemental mapping by SEM-Energy Dispersive X-ray (SEM-EDX), High Resolution Transmission Electron Microscopy (HRTEM) and surface roughness analysis; culture medium solution analyses; and molecular/genetic assays from cell culture. Our results confirmed the hypothesis that the psw polymorph, which has a strained silicate ring structure, is more osteoinductive than the wol polymorph, which has a more stable, open silicate chain structure. The observations could be attributed to easier dissolution (resorption) of psw compared to wol, which resulted in concentration profiles that were more osteoinductive for the former. Thus, we showed that crystal structure is a fundamental parameter to be considered in the intelligent design of pro-osteogenic, partially resorbable bioceramics.
Co-reporter:Ziqiu Wang, Zhijun Xu, Weilong Zhao and Nita Sahai
Journal of Materials Chemistry A 2015 - vol. 3(Issue 47) pp:NaN9167-9167
Publication Date(Web):2015/10/30
DOI:10.1039/C5TB01036E
The mineral component of bone, dentin and calcified parts of avian tendon, hydroxyapatite (HAP), has non-stoichiometric composition (idealized as Ca10(PO4)6(OH)2), plate-like morphology and nanometer size. This unique crystal morphology contributes to the physico-chemical and biochemical properties of bone. Thus, understanding the mechanism for the controlled growth of plate-like HAP nanocrystals is significant in the study of bone biomineralization. Previous studies have shown that acidic non-collagenous proteins (ANCPs), which are enriched in the residues of acidic amino acids, may play an important role in HAP crystal growth modulation. In this study, glutamic acid (Glu) and phosphoserine (Ser-OPO3) were used as model compounds to modify the synthesis of HAP nanocrystals. To identify the mechanisms of amino acids as regulators, X-ray diffraction (XRD), transmission electron microscopy (TEM) and solid state nuclear magnetic resonance (ssNMR) were used. The crystals obtained in the inorganic controls were needle-like, while crystals synthesized in the presence of the amino acids presented a plate-like morphology. The plate-like crystals had a preferred crystal orientation on (300) face, which was lacking in the inorganically grown crystals, indicating preferential adsorption and suppression of growth in specific crystal directions. Ser-OPO3 was more efficient than Glu in modulating HAP nucleation and crystal growth. Furthermore, NMR revealed interactions between the charged side chain groups in amino acids and the crystal surfaces. These results were successfully explained through our MD simulations for the free energy calculation of amino acid binding on HAP crystal faces. The present study revealed that amino acids may act as effective regulators of HAP morphology without the need to invoke large NCPs in bone biomineralization and in designing bioinspired materials for orthopaedic and dental applications.
Titanium nickelide
Silicic acid (H4O4Si)
Pentacyclo[9.5.1.13,9.15,15.17,13]octasiloxane, 1,3,5,7,9,11,13,15-octakis[2-(triethoxysilyl)ethyl]-, homopolymer
Pentacyclo[9.5.1.13,9.15,15.17,13]octasiloxane, 1,3,5,7,9,11,13,15-octakis[2-(triethoxysilyl)ethyl]-
Calcium Phosphate