Jeanne A. Hardy

Find an error

Name: Hardy, Jeanne
Organization: University of Massachusetts , USA
Department: Department of Chemistry
Title: Associate(PhD)
Co-reporter:Kevin B. Dagbay, Maureen E. Hill, Elizabeth Barrett, and Jeanne A. Hardy
Biochemistry August 29, 2017 Volume 56(Issue 34) pp:4568-4568
Publication Date(Web):July 20, 2017
DOI:10.1021/acs.biochem.7b00357
Unregulated, particularly suppressed programmed cell death is one of the distinguishing features of many cancer cells. The cysteine protease caspase-6, one of the executioners of apoptotic cell death, plays a crucial role in regulation of apoptosis. Several somatic mutations in the CASP6 gene in tumor tissues have been reported. This work explores the effect of CASP6 tumor-associated mutations on the catalytic efficiency and structure of caspase-6. In general, these mutations showed decreased overall rates of catalytic turnover. Mutations within 8 Å of the substrate-binding pocket of caspase-6 were found to be the most catalytically deactivating. Notably, the R259H substitution decreased activity by 457-fold. This substitution disrupts the cation−π stacking interaction between Arg-259 and Trp-227, which is indispensable for proper assembly of the substrate-binding loops in caspase-6. Sequence conservation analysis at the homologous position across the caspase family suggests a role for this cation−π stacking in the catalytic function of caspases generally. These data suggest that caspase-6 deactivating mutations may contribute to multifactorial carcinogenic transformations.
Co-reporter:Maureen E. Hill, Derek J. MacPherson, Peng Wu, Olivier Julien, James A. Wells, and Jeanne A. Hardy
ACS Chemical Biology 2016 Volume 11(Issue 6) pp:1603
Publication Date(Web):March 31, 2016
DOI:10.1021/acschembio.5b00971
The ability to routinely engineer protease specificity can allow us to better understand and modulate their biology for expanded therapeutic and industrial applications. Here, we report a new approach based on a caged green fluorescent protein (CA-GFP) reporter that allows for flow-cytometry-based selection in bacteria or other cell types enabling selection of intracellular protease specificity, regardless of the compositional complexity of the protease. Here, we apply this approach to introduce the specificity of caspase-6 into caspase-7, an intracellular cysteine protease important in cellular remodeling and cell death. We found that substitution of substrate-contacting residues from caspase-6 into caspase-7 was ineffective, yielding an inactive enzyme, whereas saturation mutagenesis at these positions and selection by directed evolution produced active caspases. The process produced a number of nonobvious mutations that enabled conversion of the caspase-7 specificity to match caspase-6. The structures of the evolved-specificity caspase-7 (esCasp-7) revealed alternate binding modes for the substrate, including reorganization of an active site loop. Profiling the entire human proteome of esCasp-7 by N-terminomics demonstrated that the global specificity toward natural protein substrates is remarkably similar to that of caspase-6. Because the esCasp-7 maintained the core of caspase-7, we were able to identify a caspase-6 substrate, lamin C, that we predict relies on an exosite for substrate recognition. These reprogrammed proteases may be the first tool built with the express intent of distinguishing exosite dependent or independent substrates. This approach to specificity reprogramming should also be generalizable across a wide range of proteases.
Co-reporter:Judy Ventura, Scott J. Eron, Daniella C. González-Toro, Kishore Raghupathi, Feng Wang, Jeanne A. Hardy, and S. Thayumanavan
Biomacromolecules 2015 Volume 16(Issue 10) pp:
Publication Date(Web):September 2, 2015
DOI:10.1021/acs.biomac.5b00779
Conjugation of biologically active proteins to polymeric materials is of great interest in the treatment of cancer and other diseases of protein deficiency. The conjugation of such biomacromolecules is challenging both due to their hydrophilicity and propensity to denature under non-native conditions. We describe a novel reactive self-assembly approach to “wrap” a protein with polymers, simultaneously protecting its delicate folded state and silencing its enzymatic activity. This approach has been demonstrated using caspase-3, an apoptosis-inducing protein, as the first case study. The protein–polymer conjugation is designed to be reversed under the native conditions for caspase-3, that is, the reducing environment found in the cytosol. The current strategy allowed release and recovery of up to 86% of caspase activity and nanogel–caspase-3 conjugates induced 70–80% apoptotic cell death shortly thereafter. This approach is widely generalizable and should be applicable to the intracellular delivery of a wide range of therapeutic proteins for treatment of complex and genetic diseases.
Co-reporter:Muslum Yildiz, Sumana Ghosh, Jeffrey A. Bell, Woody Sherman, and Jeanne A. Hardy
ACS Chemical Biology 2013 Volume 8(Issue 12) pp:2744
Publication Date(Web):October 28, 2013
DOI:10.1021/cb400612h
Dengue virus is the flavivirus that causes dengue fever, dengue hemorrhagic disease, and dengue shock syndrome, which are currently increasing in incidence worldwide. Dengue virus protease (NS2B-NS3pro) is essential for dengue virus infection and is thus a target of therapeutic interest. To date, attention has focused on developing active-site inhibitors of NS2B-NS3pro. The flat and charged nature of the NS2B-NS3pro active site may contribute to difficulties in developing inhibitors and suggests that a strategy of identifying allosteric sites may be useful. We report an approach that allowed us to scan the NS2B-NS3pro surface by cysteine mutagenesis and use cysteine reactive probes to identify regions of the protein that are susceptible to allosteric inhibition. This method identified a new allosteric site utilizing a circumscribed panel of just eight cysteine variants and only five cysteine reactive probes. The allosterically sensitive site is centered at Ala125, between the 120s loop and the 150s loop. The crystal structures of WT and modified NS2B-NS3pro demonstrate that the 120s loop is flexible. Our work suggests that binding at this site prevents a conformational rearrangement of the NS2B region of the protein, which is required for activation. Preventing this movement locks the protein into the open, inactive conformation, suggesting that this site may be useful in the future development of therapeutic allosteric inhibitors.
Co-reporter:Sravanti Vaidya and Jeanne A. Hardy
Biochemistry 2011 Volume 50(Issue 16) pp:
Publication Date(Web):March 7, 2011
DOI:10.1021/bi2001664
Caspase-6 is an apoptotic protease that also plays important roles in neurodegenerative disorders, including Huntington’s and Alzheimer’s diseases. Caspase-6 is the only caspase known to form a latent state in which two extended helices block access to the active site. These helices must convert to strands for binding substrate. We probed the interconverting region and found that the absence of helix-breaking residues is more critical than a helix-bridging, hydrogen-bond network for formation of the extended conformation. In addition, our results suggest that caspase-6 must undergo a transition through a low-stability intermediate to bind the active-site ligand. Mature caspase-6 is capable of adopting a latent state not observed in any other caspase. The absence of any helix-breaking residues allows caspase-6 to adopt the extended helical conformation. When we introduced helix-breaking residues similar to those seen in caspase-3 or -7, the structure and stability of the latent state were compromised.
Co-reporter:Elih M. Velázquez-Delgado, Jeanne A. Hardy
Structure (4 April 2012) Volume 20(Issue 4) pp:742-751
Publication Date(Web):4 April 2012
DOI:10.1016/j.str.2012.02.003
Caspases, a family of apoptotic proteases, are increasingly recognized as being extensively phosphorylated, usually leading to inactivation. To date, no structural mechanism for phosphorylation-based caspase inactivation is available, although this information may be key to achieving caspase-specific inhibition. Caspase-6 has recently been implicated in neurodegenerative conditions including Huntington's and Alzheimer's diseases. A full understanding of caspase-6 regulation is crucial to caspase-6-specific inhibition. Caspase-6 is phosphorylated by ARK5 kinase at serine 257 leading to suppression of cell death via caspase-6 inhibition. Our structure of the fully inactive phosphomimetic S257D reveals that phosphorylation results in a steric clash with P201 in the L2′ loop. Removal of the proline side chain alleviates the clash resulting in nearly wild-type activity levels. This phosphomimetic-mediated steric clash causes misalignment of the substrate-binding groove, preventing substrate binding. Substrate-binding loop misalignment appears to be a widely used regulatory strategy among caspases and may present a new paradigm for caspase-specific control.Graphical AbstractDownload high-res image (293KB)Download full-size imageHighlights► Phosphorylation at S257 inhibits both active caspase-6 and the procaspase-6 zymogen ► Steric clash between phosphoserine 257 and proline 201 inhibits caspase-6 ► Steric clash causes misalignment of the four substrate-binding groove loops ► Loop misalignment by phosphorylation is predicted for many caspases
Co-reporter:Scott J. Eron, Kishore Raghupathi, Jeanne A. Hardy
Structure (3 January 2017) Volume 25(Issue 1) pp:27-39
Publication Date(Web):3 January 2017
DOI:10.1016/j.str.2016.11.001
•PAK2 phosphorylation of caspase-7 inhibits activity by two distinct mechanisms•Phosphorylation of caspase-7 at S30 slows zymogen activation by upstream caspases•S30 phosphorylation interferes with caspase-7:caspase-9 interaction•Crystal structure of S239E phosphomimetic suggests substrate binding is obstructedCaspases, the cysteine proteases that execute apoptosis, are tightly regulated via phosphorylation by a series of kinases. Although all apoptotic caspases work in concert to promote apoptosis, different kinases regulate individual caspases. Several sites of caspase-7 phosphorylation have been reported, but without knowing the molecular details, it has been impossible to exploit or control these complex interactions, which normally prevent unwanted proliferation. During dysregulation, PAK2 kinase plays an alternative anti-apoptotic role, phosphorylating caspase-7 and promoting unfettered cell growth and chemotherapeutic resistance. PAK2 phosphorylates caspase-7 at two sites, inhibiting activity using two different molecular mechanisms, before and during apoptosis. Phosphorylation of caspase-7 S30 allosterically obstructs its interaction with caspase-9, preventing intersubunit linker processing, slowing or preventing caspase-7 activation. S239 phosphorylation renders active caspase-7 incapable of binding substrate, blocking later events in apoptosis. Each of these mechanisms is novel, representing new opportunities for synergistic control of caspases and their counterpart kinases.Download high-res image (259KB)Download full-size image
Co-reporter:Peng Wu, Samantha B. Nicholls, Jeanne A. Hardy
Biophysical Journal (2 April 2013) Volume 104(Issue 7) pp:
Publication Date(Web):2 April 2013
DOI:10.1016/j.bpj.2013.01.058
Proteases are one of the most important and historically utilized classes of drug targets. To effectively interrogate this class of proteins, which encodes nearly 2% of the human proteome, it is necessary to develop effective and cost-efficient methods that report on their activity both in vitro and in vivo. We have developed a robust reporter of caspase proteolytic activity, called caspase-activatable green fluorescent protein (CA-GFP). The caspases play central roles in homeostatic regulation, as they execute programmed cell death, and in drug design, as caspases are involved in diseases ranging from cancer to neurodegeneration. CA-GFP is a genetically encoded dark-to-bright fluorescent reporter of caspase activity in in vitro, cell-based, and animal systems. Based on the CA-GFP platform, we developed reporters that can discriminate the activities of caspase-6 and -7, two highly related proteases. A second series of reporters, activated by human rhinovirus 3C protease, demonstrated that we could alter the specificity of the reporter by reengineering the protease recognition sequence. Finally, we took advantage of the spectrum of known fluorescent proteins to generate green, yellow, cyan, and red reporters, paving the way for multiplex protease monitoring.
Co-reporter:Sravanti Vaidya, Elih M. Velázquez-Delgado, Genevieve Abbruzzese, Jeanne A. Hardy
Journal of Molecular Biology (11 February 2011) Volume 406(Issue 1) pp:75-91
Publication Date(Web):11 February 2011
DOI:10.1016/j.jmb.2010.11.031
Caspase-6 is an apoptotic cysteine protease that also governs disease progression in Huntington's and Alzheimer's diseases. Caspase-6 is of great interest as a target for treatment of these neurodegenerative diseases; however, the molecular basis of caspase-6 function and regulation remains poorly understood. In the recently reported structure of caspase-6, the 60's and 130's helices at the base of the substrate-binding groove extend upward, in a conformation entirely different from that of any other caspase. Presently, the central question about caspase-6 structure and function is whether the extended conformation is the catalytically competent conformation or whether the extended helices must undergo a large conformational rearrangement in order to bind substrate. We have generated a series of caspase-6 cleavage variants, including a novel constitutively two-chain form, and determined crystal structures of caspase-6 with and without the intersubunit linker. This series allows evaluation of the role of the prodomain and intersubunit linker on caspase-6 structure and function before and after substrate binding. Caspase-6 is inherently more stable than closely related caspases. Cleaved caspase-6 with both the prodomain and the linker present is the most stable, indicating that these two regions act in concert to increase stability, but maintain the extended conformation in the unliganded state. Moreover, these data suggest that caspase-6 undergoes a significant conformational change upon substrate binding, adopting a structure that is more like canonical caspases.Download high-res image (86KB)Download full-size imageResearch Highlights► Stabilizing interactions exist between the prodomain and the intersubunit linker. ► Apo caspase-6 adopts a conformation different from that of all other caspases. ► The 60's and 130's regions are converted to two helices in caspase-6. ► The 90's helix is rotated out relative to other structures. ► Binding active-site ligands result in loss of helical structure.
2-Propenoic acid, 2-methyl-, 2-(2-pyridinyldithio)ethyl ester
L-Arginine, L-cysteinyl-L-arginyl-L-arginyl-
poly(ethylene glycol) methyl ether meth-acrylate