Co-reporter:M. Koyano;S. Mizutani;Y. Hayashi;S. Nishino
Journal of Electronic Materials 2017 Volume 46( Issue 5) pp:2873-2879
Publication Date(Web):21 October 2016
DOI:10.1007/s11664-016-5016-1
Printing technology is expected to provide innovative and environmentally friendly processes for thermoelectric (TE) module fabrication. As described in this paper, we propose an orientation control process using plastic deformation at high temperatures and present high-oriented TE nano-bulks fabricated from bismuth telluride (Bi-Te) TE inks using this process. In the case of n-type Bi-Te, surface x-ray diffraction reveals that crystalline grains in the plastic-deformed nano-bulk demonstrate a c-plane orientation parallel to the pressed face. According to the high orientation, electrical resistivity ρ, thermal conductivity κ, and figure of merit ZT show anisotropic behavior. It is noteworthy that (ZT)// almost reaches unity (ZT)// ∼1 at 340 K, even at low temperatures of the plastic deformation process. In contrast, the ZT of plastic-deformed p-type nano-bulk indicates isotropic behavior. The difference in the process temperature dependence of ZT suggests that n-type and p-type nano-bulk orientation mechanisms mutually differ.