The unprecedented dehydration of a selenenic acid (RCH2SeOH) to a selenoaldehyde (RCHSe) has been demonstrated. A primary-alkyl-substituted selenenic acid was synthesized for the first time by taking advantage of a bulky cavity-shaped substituent. Upon heating in solution, the selenenic acid underwent thermal dehydration to produce a stable selenoaldehyde, which was isolated as stable crystals and crystallographically characterized. Investigation of the reaction mechanism revealed that this β dehydration reaction involves two processes, both of which reflect the characteristics of a selenenic acid: 1) dehydrative condensation of two molecules of selenenic acid to generate a selenoseleninate intermediate [RCH2SeSe(O)CH2R], an isomer of a selenenic anhydride, and 2) subsequent β elimination of the selenenic acid from this intermediate to form a CSe double bond, which establishes the self-catalyzed β dehydration of the selenenic acid.
The unprecedented dehydration of a selenenic acid (RCH2SeOH) to a selenoaldehyde (RCHSe) has been demonstrated. A primary-alkyl-substituted selenenic acid was synthesized for the first time by taking advantage of a bulky cavity-shaped substituent. Upon heating in solution, the selenenic acid underwent thermal dehydration to produce a stable selenoaldehyde, which was isolated as stable crystals and crystallographically characterized. Investigation of the reaction mechanism revealed that this β dehydration reaction involves two processes, both of which reflect the characteristics of a selenenic acid: 1) dehydrative condensation of two molecules of selenenic acid to generate a selenoseleninate intermediate [RCH2SeSe(O)CH2R], an isomer of a selenenic anhydride, and 2) subsequent β elimination of the selenenic acid from this intermediate to form a CSe double bond, which establishes the self-catalyzed β dehydration of the selenenic acid.
Efficient end-capping synthesis of neutral donor–acceptor (D–A) [2]rotaxanes without loading any catalysts or activating agents was achieved by utilizing high reactivity of a pentacoordinated hydrosilane toward salicylic acid derivatives. As components of [2]rotaxanes, an electron-deficient naphthalenediimide-containing axle with a salicylic acid terminus and several electron-rich bis(naphthocrown) ether macrocycles were employed. End-capping reactions with the pentacoordinated hydrosilane underwent smoothly even at low temperature to afford the corresponding [2]rotaxanes in good yields. A [2]rotaxane containing bis-1,5-(dinaphtho)-38-crown-10 ether as a wheel molecule was synthesized and isolated in 84 % yield by the end-capping at −10 °C, presenting the highest yield ever reported for the end-capping synthesis of a neutral D–A [2]rotaxane. It was found that the yields of the [2]rotaxanes in the end-capping reactions were almost parallel to the formation ratios of the corresponding pseudo[2]rotaxanes estimated by utilizing model systems. These results indicate that the end-capping reaction using the pentacoordinated hydrosilane proceeded without perturbing the threading process, and most of the pseudo[2]rotaxanes underwent efficient end-capping reaction even at low temperature.