Co-reporter:Long Li, Xiu Le, Ling Wang, Qiong Gu, Huihao Zhou and Jun Xu
RSC Advances 2015 vol. 5(Issue 128) pp:105600-105608
Publication Date(Web):07 Dec 2015
DOI:10.1039/C5RA22568J
Bacterial DNA gyrase is not expressed in eukaryotes. It is a promising target for broad-spectrum antibiotics. This paper reports new DNA gyrase inhibitors as broad-spectrum antibacterial agents discovered by means of target-based in silico and in vitro models. Two machine learning methods (naïve Bayesian and recursive partitioning) were employed to build in silico models based on physicochemical descriptors and structural fingerprints. For both training and testing sets, the overall predictive accuracies of the best in silico models were greater than 80%. The best 11 models were used to virtually screen a molecular database to identify DNA gyrase inhibitors. The in vitro models were used to verify the virtual hits activities against Escherichia coli, methicillin-resistant Staphylococcus aureus and other bacteria, and DNA gyrase. The MIC values of the confirmed DNA gyrase inhibitors range between 1 and 32 μg mL−1 and, the relative inhibition rates of the inhibitors range between 42% to 75% at 1 μM. Cell-based cytotoxicity assays demonstrated that the confirmed DNA gyrase inhibitors were not toxic. In silico studies indicated that the new DNA gyrase inhibitors have similar binding modes to the reported inhibitors.
Co-reporter:Yingchen Ju, Shuilong Tong, Yongxiang Gao, Wei Zhao, Qi Liu, Qiong Gu, Jun Xu, Liwen Niu, Maikun Teng, Huihao Zhou
Journal of Structural Biology (September 2016) Volume 195(Issue 3) pp:306-315
Publication Date(Web):1 September 2016
DOI:10.1016/j.jsb.2016.07.008
l-amino acid oxidases/deaminases (LAAOs/LAADs) are a class of oxidoreductases catalyzing the oxidative deamination of l-amino acids to α-keto acids. They are widely distributed in eukaryotic and prokaryotic organisms, and exhibit diverse substrate specificity, post-translational modifications and cellular localization. While LAAOs isolated from snake venom have been extensively characterized, the structures and functions of LAAOs from other species are largely unknown. Here, we reported crystal structure of a bacterial membrane-bound LAAD from Proteus vulgaris (pvLAAD) in complex with flavin adenine dinucleotide (FAD). We found that the overall fold of pvLAAD does not resemble typical LAAOs. Instead it, is similar to d-amino acid oxidases (DAAOs) with an additional hydrophobic insertion module on protein surface. Structural analysis and liposome-binding assays suggested that the hydrophobic module serves as an extra membrane-binding site for LAADs. Bacteria from genera Proteus and Providencia were found to encode two classes of membrane-bound LAADs. Based on our structure, the key roles of residues Q278 and L317 in substrate selectivity were proposed and biochemically analyzed. While LAADs on the membrane were proposed to transfer electrons to respiratory chain for FAD re-oxidization, we observed that the purified pvLAAD could generate a significant amount of hydrogen peroxide in vitro, suggesting it could use dioxygen to directly re-oxidize FADH2 as what typical LAAOs usually do. These findings provide a novel insights for a better understanding this class of enzymes and will help developing biocatalysts for industrial applications.
Co-reporter:Gongrui Guo, Yongxiang Gao, Zhongliang Zhu, Debiao Zhao, Zhihong Liu, Huihao Zhou, Liwen Niu, Maikun Teng
Journal of Structural Biology (December 2015) Volume 192(Issue 3) pp:418-425
Publication Date(Web):1 December 2015
DOI:10.1016/j.jsb.2015.09.023
Spt5 (NusG in bacteria) is the only RNA polymerase-associated factor known to be conserved in all three domains of life. In archaea and eukaryotes, Spt5 associates with Spt4, an elongation factor that is absent in bacteria, to form a functional heterodimeric complex. Previous studies suggest that the Spt4:Spt5 complex interacts directly with DNA at the double-stranded DNA exit tunnel of RNA polymerase to regulate gene transcription. In this study, the DNA-binding ability of Spt4:Spt5 from the archaeon Methanocaldococcus jannaschii was confirmed via nuclear magnetic resonance chemical shift perturbation and fluorescence polarization assays. Crystallographic analysis of the full-length MjSpt4:Spt5 revealed two distinct conformations of the C-terminal KOW domain of Spt5. A similar alkaline region was found on the Spt4:Spt5 surface in both crystal forms, and identified as double-stranded DNA binding patch through mutagenesis-fluorescence polarization assays. Based on these structural and biochemical data, the Spt4:Spt5-DNA binding model was built for the first time.