Co-reporter:Elisavet Makou , Andrew P. Herbert , Paul N. Barlow
Biochemistry 2013 Volume 52(Issue 23) pp:3949-3962
Publication Date(Web):May 23, 2013
DOI:10.1021/bi4003452
Factor H (FH) is a soluble regulator of the proteolytic cascade at the core of the evolutionarily ancient vertebrate complement system. Although FH consists of a single chain of similar protein modules, it has a demanding job description. Its chief role is to prevent complement-mediated injury to healthy host cells and tissues. This entails recognition of molecular patterns on host surfaces combined with control of one of nature’s most dangerous examples of a positive-feedback loop. In this way, FH modulates, where and when needed, an amplification process that otherwise exponentially escalates the production of the pro-inflammatory, pro-phagocytic, and pro-cytolytic cleavage products of complement proteins C3 and C5. Mutations and single-nucleotide polymorphisms in the FH gene and autoantibodies against FH predispose individuals to diseases, including age-related macular degeneration, dense-deposit disease, and atypical hemolytic uremic syndrome. Moreover, deletions or variations of genes for FH-related proteins also influence the risk of disease. Numerous pathogens hijack FH and use it for self-defense. As reviewed herein, a molecular understanding of FH function is emerging. While its functional oligomeric status remains uncertain, progress has been achieved in characterizing its three-dimensional architecture and, to a lesser extent, its intermodular flexibility. Models are proposed, based on the reconciliation of older data with a wealth of recent evidence, in which a latent circulating form of FH is activated by its principal target, C3b tethered to a self-surface. Such models suggest hypotheses linking sequence variations to pathophysiology, but improved, more quantitative, functional assays and rigorous data analysis are required to test these ideas.
Co-reporter:Mateusz Maciejewski, Nico Tjandra, and Paul N. Barlow
Biochemistry 2011 Volume 50(Issue 38) pp:8138-8149
Publication Date(Web):July 27, 2011
DOI:10.1021/bi200575b
Characterization of segmental flexibility is needed to understand the biological mechanisms of the very large category of functionally diverse proteins, exemplified by the regulators of complement activation, that consist of numerous compact modules or domains linked by short, potentially flexible, sequences of amino acid residues. The use of NMR-derived residual dipolar couplings (RDCs), in magnetically aligned media, to evaluate interdomain motion is established but only for two-domain proteins. We focused on the three N-terminal domains (called CCPs or SCRs) of the important complement regulator, human factor H (i.e., FH1–3). These domains cooperate to facilitate cleavage of the key complement activation-specific protein fragment, C3b, forming iC3b that no longer participates in the complement cascade. We refined a three-dimensional solution structure of recombinant FH1–3 based on nuclear Overhauser effects and RDCs. We then employed a rudimentary series of RDC data sets, collected in media containing magnetically aligned bicelles (disklike particles formed from phospholipids) under three different conditions, to estimate interdomain motions. This circumvents a requirement of previous approaches for technically difficult collection of five independent RDC data sets. More than 80% of conformers of this predominantly extended three-domain molecule exhibit flexions of <40°. Such segmental flexibility (together with the local dynamics of the hypervariable loop within domain 3) could facilitate recognition of C3b via initial anchoring and eventual reorganization of modules to the conformation captured in the previously solved crystal structure of a C3b:FH1–4 complex.
Co-reporter:Stanislava Uhrinova;Feng Lin;Graeme Ball;Krystyna Bromek;Dusan Uhrin;M. Edward Medof;Paul N. Barlow
PNAS 2003 100 (8 ) pp:4718-4723
Publication Date(Web):2003-04-15
DOI:10.1073/pnas.0730844100
The second and third modules of human decay accelerating factor (DAF) are necessary and sufficient to accelerate decay of
the classical pathway (CP) convertase of complement. No structure of a mammalian protein with decay-accelerating activity
has been available to date. We therefore determined the solution structure of DAF modules 2 and 3 (DAF∼2,3). Structure-guided
analysis of 24 mutants identified likely contact points between DAF and the CP convertase. Three (R96, R69, and a residue
in the vicinity of L171) lie on DAF∼2,3's concave face. A fourth, consisting of K127 and nearby R100, is on the opposite face.
Regions of module 3 remote from the semiflexible 2–3 interface seem not to be involved in binding to the CP convertase. DAF
thus seems to occupy a groove on the CP convertase such that both faces of DAF close to the 2–3 junction (including a positively
charged region that encircles the protein at this point) interact simultaneously. Alternative pathway convertase interactions
with DAF require additional regions of CCP 3 lying away from the 2–3 interface, consistent with the established additional
requirement of module 4 for alternative pathway regulation.
Co-reporter:Christoph Q. Schmidt, Fern C. Slingsby, Anna Richards, Paul N. Barlow
Protein Expression and Purification (April 2011) Volume 76(Issue 2) pp:254-263
Publication Date(Web):1 April 2011
DOI:10.1016/j.pep.2010.12.002
Human complement factor H (FH), an abundant 155-kDa plasma glycoprotein with 40 disulphide bonds, regulates the alternative-pathway complement cascade. Mutations and single nucleotide polymorphisms in the FH gene predispose to development of age-related macular degeneration, atypical haemolytic uraemic syndrome and dense deposit disease. Supplementation with FH variants protective against disease is an enticing therapeutic prospect. Current sources of therapeutic FH are restricted to human blood plasma highlighting a need for recombinant material. Previously FH expression in cultured plant, mammalian or insect cells yielded protein amounts inadequate for full characterisation, and orders of magnitude below therapeutic usefulness. Here, the V62,Y402 variant of FH has been produced recombinantly (rFH) in Pichia pastoris cells. Codon-optimisation proved essential whilst exploitation of the yeast mating α-factor peptide ensured secretion. We thereby produced multiple 10s-of-milligram of rFH. Following endoglycosidase H digestion of N-linked glycans, rFH (with eight residual N-acetylglucosamine moieties) was purified on heparin-affinity resin and anion-exchange chromatography. Full-length rFH was verified by mass spectrometry and Western blot using monoclonal antibodies to the C-terminus. Recombinant FH is a single non-aggregated species (by dynamic light scattering) and fully functional in biochemical and biological assays. An additional version of rFH was produced in which eight N-glycosylation sequons were ablated by Asn–Gln substitutions resulting in a glycan-devoid product. Successful production of rFH in this potentially very highly expressing system makes production of therapeutically useful quantities economically viable. Furthermore, ease of genetic manipulation in P. pastoris would allow production of engineered FH versions with enhanced pharmacokinetic and pharmacodynamic properties.
Co-reporter:Christoph Q. Schmidt, Andrew P. Herbert, Haydyn D.T. Mertens, Mara Guariento, ... Paul N. Barlow
Journal of Molecular Biology (8 January 2010) Volume 395(Issue 1) pp:105-122
Publication Date(Web):8 January 2010
DOI:10.1016/j.jmb.2009.10.010
The first eight and the last two of 20 complement control protein (CCP) modules within complement factor H (fH) encompass binding sites for C3b and polyanionic carbohydrates. These binding sites cooperate self-surface selectively to prevent C3b amplification, thus minimising complement-mediated damage to host. Intervening fH CCPs, apparently devoid of such recognition sites, are proposed to play a structural role. One suggestion is that the generally small CCPs 10–15, connected by longer-than-average linkers, act as a flexible tether between the two functional ends of fH; another is that the long linkers induce a 180° bend in the middle of fH. To test these hypotheses, we determined the NMR-derived structure of fH12–13 consisting of module 12, shown here to have an archetypal CCP structure, and module 13, which is uniquely short and features a laterally protruding helix-like insertion that contributes to a prominent electropositive patch. The unusually long fH12–13 linker is not flexible. It packs between the two CCPs that are not folded back on each other but form a shallow vee shape; analytical ultracentrifugation and X-ray scattering supported this finding. These two techniques additionally indicate that flanking modules (within fH11–14 and fH10–15) are at least as rigid and tilted relative to neighbours as are CCPs 12 and 13 with respect to one another. Tilts between successive modules are not unidirectional; their principal axes trace a zigzag path. In one of two arrangements for CCPs 10–15 that fit well with scattering data, CCP 14 is folded back onto CCP 13. In conclusion, fH10–15 forms neither a flexible tether nor a smooth bend. Rather, it is compact and has embedded within it a CCP module (CCP 13) that appears to be highly specialised given both its deviant structure and its striking surface charge distribution. A passive, purely structural role for this central portion of fH is unlikely.
Co-reporter:Maria C. Sanchez, Jonathan G. Renshaw, Gareth Davies, Paul N. Barlow, Martin Vogtherr
FEBS Letters (16 July 2010) Volume 584(Issue 14) pp:3035-3041
Publication Date(Web):16 July 2010
DOI:10.1016/j.febslet.2010.05.058
MDM2 and MDM4 are proteins involved in regulating the tumour suppressor p53. MDM2/4 and p53 interact through their N-terminal domains and disrupting this interaction is a potential anticancer strategy. The MDM2–p53 interaction is structurally and biophysically well characterised, whereas equivalent studies on MDM4 are hampered by aggregation of the protein. Here we present the NMR characterization of MDM4 (14-111) both free and in complexes with peptide and small-molecule ligands. MDM4 is more dynamic in its apo state than is MDM2, with parts of the protein being unstructured. These regions become structured upon binding of a ligand. MDM4 appears to bind its ligand through conformational selection and/or an induced fit mechanism; this might influence rational design of MDM4 inhibitors.Structured summaryMINT-7896835: p53 (uniprotkb:P04637) and MDM4 (uniprotkb:O15151) bind (MI:0407) by isothermal titration calorimetry (MI:0065)MINT-7896820: p53 (uniprotkb:P04637) and MDM4 (uniprotkb:O15151) bind (MI:0407) by nuclear magnetic resonance (MI:0077)
Co-reporter:Elisavet Makou, Haydyn D.T. Mertens, Mateusz Maciejewski, Dinesh C. Soares, ... Paul N. Barlow
Journal of Molecular Biology (14 December 2012) Volume 424(Issue 5) pp:295-312
Publication Date(Web):14 December 2012
DOI:10.1016/j.jmb.2012.09.013
The 155-kDa plasma glycoprotein factor H (FH), which consists of 20 complement control protein (CCP) modules, protects self-tissue but not foreign organisms from damage by the complement cascade. Protection is achieved by selective engagement of FH, via CCPs 1–4, CCPs 6–8 and CCPs 19–20, with polyanion-rich host surfaces that bear covalently attached, activation-specific, fragments of complement component C3. The role of intervening CCPs 9–18 in this process is obscured by lack of structural knowledge. We have concatenated new high-resolution solution structures of overlapping recombinant CCP pairs, 10–11 and 11–12, to form a three-dimensional structure of CCPs 10–12 and validated it by small-angle X-ray scattering of the recombinant triple‐module fragment. Superimposing CCP 12 of this 10–12 structure with CCP 12 from the previously solved CCP 12–13 structure yielded an S-shaped structure for CCPs 10–13 in which modules are tilted by 80–110° with respect to immediate neighbors, but the bend between CCPs 10 and 11 is counter to the arc traced by CCPs 11–13. Including this four-CCP structure in interpretation of scattering data for the longer recombinant segments, CCPs 10–15 and 8–15, implied flexible attachment of CCPs 8 and 9 to CCP 10 but compact and intimate arrangements of CCP 14 with CCPs 12, 13 and 15. Taken together with difficulties in recombinant production of module pairs 13–14 and 14–15, the aberrant structure of CCP 13 and the variability of 13–14 linker sequences among orthologues, a structural dependency of CCP 14 on its neighbors is suggested; this has implications for the FH mechanism.Graphical abstractDownload high-res image (93KB)Download full-size imageHighlights► The 20-CCP‐module human protein FH prevents complement-mediated tissue damage. ► NMR structures of CCPs 10–11 and 11–12 suggest that this region enhances flexional strength of FH. ► Concatenating bi-modules helps interpret small‐angle X‐ray scattering data, revealing highly compacted arrangement of CCPs 13, 14 and 15. ► Apparent structural dependency of CCP 14 on neighbors could provide a switch between ordered and flexible FH architectures.