Chitra Mandyam

Find an error

Name: Mandyam, Chitra
Organization: Scripps Research Institute , USA
Department:
Title: Associate(PhD)
Co-reporter:Sucharita S. Somkuwar, McKenzie J. Fannon, Tran Bao Nguyen, Chitra D. Mandyam
Neuroscience 2017 Volume 362(Volume 362) pp:
Publication Date(Web):24 October 2017
DOI:10.1016/j.neuroscience.2017.08.048
•Protracted abstinence from chronic alcohol enhances the proximity of oligodendrocytes with endothelial cells.•Enhanced oligo-vasculature proximity is associated with enhanced blood–brain barrier permeability.•Wheel running during abstinence prevents oligo-vascular maladaptations and normalizes blood–brain barrier permeability.Alcoholism is a relapsing disorder with limited treatment options, in part due to our limited understanding of the disease etiology. We have recently shown that increased ethanol-seeking in a behavioral model of relapse in a rat model of alcoholism was associated with increased oligodendrogenesis which was positively correlated with platelet/endothelial cell adhesion molecule (PECAM-1) expression in the medial prefrontal cortex (mPFC). The current study investigated whether newly born oligodendrocytes form close physical associations with endothelial cells expressing PECAM-1 and whether these changes were accompanied by altered blood–brain barrier (BBB) integrity. Colableling and confocal analysis demonstrate that newly born oligodendroglia were always located in close physical proximity to PECAM-1 in the mPFC of rats that were ethanol dependent and demonstrated high propensity for relapse. Notably, the endothelial proximity of new oligodendrocytes was associated with reduced expression of endothelial barrier antigen (SMI-71), a marker for BBB integrity. Furthermore, voluntary wheel running during abstinence enhanced SMI-71 expression in endothelial cells, indicating protection against abstinence-induced reduction in BBB integrity. Taken together, these results suggest that ethanol experience and abstinence disrupts homeostasis in the oligo-vascular niche in the mPFC. Reversing these mechanisms may hold the key to reducing propensity for relapse in individuals with moderate to severe alcohol use disorder.
Co-reporter:Jeffery C. Sobieraj;Airee Kim;McKenzie J. Fannon
Brain Structure and Function 2016 Volume 221( Issue 1) pp:261-276
Publication Date(Web):2016 January
DOI:10.1007/s00429-014-0905-7
Exercise (physical activity) has been proposed as a treatment for drug addiction. In rodents, voluntary wheel running reduces cocaine and nicotine seeking during extinction, and reinstatement of cocaine seeking triggered by drug-cues. The purpose of this study was to examine the effects of chronic wheel running during withdrawal and protracted abstinence on extinction and reinstatement of methamphetamine seeking in methamphetamine dependent rats, and to determine a potential neurobiological correlate underlying the effects. Rats were given extended access to methamphetamine (0.05 mg/kg, 6 h/day) for 22 sessions. Rats were withdrawn and were given access to running wheels (wheel runners) or no wheels (sedentary) for 3 weeks after which they experienced extinction and reinstatement of methamphetamine seeking. Extended access to methamphetamine self-administration produced escalation in methamphetamine intake. Methamphetamine experience reduced running output, and conversely, access to wheel running during withdrawal reduced responding during extinction and, context- and cue-induced reinstatement of methamphetamine seeking. Immunohistochemical analysis of brain tissue demonstrated that wheel running during withdrawal did not regulate markers of methamphetamine neurotoxicity (neurogenesis, neuronal nitric oxide synthase, vesicular monoamine transporter-2) and cellular activation (c-Fos) in brain regions involved in relapse to drug seeking. However, reduced methamphetamine seeking was associated with running-induced reduction (and normalization) of the number of tyrosine hydroxylase immunoreactive neurons in the periaqueductal gray (PAG). The present study provides evidence that dopamine neurons of the PAG region show adaptive biochemical changes during methamphetamine seeking in methamphetamine dependent rats and wheel running abolishes these effects. Given that the PAG dopamine neurons project onto the structures of the extended amygdala, the present findings also suggest that wheel running may be preventing certain allostatic changes in the brain reward and stress systems contributing to the negative reinforcement and perpetuation of the addiction cycle.
Co-reporter:Sucharita S. Somkuwar;McKenzie J. Fannon
Brain Structure and Function 2016 Volume 221( Issue 9) pp:4319-4335
Publication Date(Web):2016 December
DOI:10.1007/s00429-015-1163-z
Effects of withdrawal from ethanol drinking in chronic intermittent ethanol vapor (CIE)-exposed dependent rats and air-exposed nondependent rats on proliferation and survival of progenitor cells in the hippocampus and the medial prefrontal cortex (mPFC) were investigated. Rats were injected with 5′-Bromo 2-deoxyuridine 72 h post-CIE to measure proliferation (2 h-old cells) and survival (29-day-old cells) of progenitors born during a time-point previously reported to elicit a proliferative burst in the hippocampus. Hippocampal and mPFC brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B receptor (TrkB) expression were measured 3 h or 21d post-CIE to evaluate neurotrophic signaling during a time point preceding the proliferative burst and survival of newly born progenitors. CIE rats demonstrated elevated drinking compared to nondependent rats and CIE rats maintained elevated drinking following protracted abstinence. Withdrawal from CIE increased BDNF levels in the hippocampus and mPFC, and subsequently increased proliferation in the hippocampus and mPFC compared to nondependent rats and controls. Protracted abstinence from CIE reduced BDNF expression to control levels, and subsequently reduced neurogenesis compared to controls and nondependent rats in the hippocampus. In the mPFC, protracted abstinence reduced BDNF expression to control levels, whereas increased oligodendrogenesis in dependent rats compared to nondependent rats and controls. These results suggest a novel relationship between BDNF and progenitors in the hippocampus and mPFC, in which increased ethanol drinking may alter hippocampal and cortical function in alcohol dependent subjects by altering the cellular composition of newly born progenitors in the hippocampus and mPFC.
Co-reporter:Ami Cohen;Matthew T. Soleiman;Reneta Talia;George F. Koob
Psychopharmacology 2015 Volume 232( Issue 2) pp:453-463
Publication Date(Web):2015 January
DOI:10.1007/s00213-014-3685-0
Limited access nicotine self-administration decreases hippocampal neurogenesis, providing a mechanism for the deleterious effects of nicotine on hippocampal neuronal plasticity. However, recent studies have shown that limited access nicotine self-administration does not exhibit key features of nicotine dependence such as motivational withdrawal and increased motivation for nicotine after deprivation.The present study used extended access nicotine self-administration (0.03 mg/kg/infusion, 21 h/day, 4 days) with intermittent periods of deprivation (3 days) for 14 weeks, to test the hypothesis that this model enhances nicotine seeking and produces distinct responses in hippocampal neurogenesis when compared with limited access (1 h/day, 4 days) intake. Animals in the extended access group were either perfused prior to or following their final deprivation period, whereas animals in the limited access group were perfused after their last session.Limited- and extended access nicotine self-administration with periodic deprivation did not affect proliferation and differentiation of oligodendrocyte progenitors in the medial prefrontal cortex (mPFC). Conversely, extended access nicotine self-administration with periodic deprivation enhanced proliferation and differentiation of hippocampal neural progenitors. Furthermore, in the hippocampus, the number of differentiating NeuroD-labeled cells strongly and positively correlated with enhanced nicotine seeking in rats that experienced extended access nicotine self-administration.These findings demonstrate that extended versus limited access to nicotine self-administration differentially affects the generation of new oligodendroglia and new neurons during adulthood. The increases in the number of differentiating cells in extended access nicotine self-administering rats may consequently contribute to aberrant hippocampal neurogenesis and may contribute to maladaptive addiction-like behaviors dependent on the hippocampus.
Co-reporter:Alexander J. Engelmann;Mark B. Aparicio;Airee Kim
Brain Structure and Function 2014 Volume 219( Issue 2) pp:657-672
Publication Date(Web):2014 March
DOI:10.1007/s00429-013-0525-7
We investigated whether prior exposure to chronic wheel running (WR) alters maladaptive patterns of excessive and escalating methamphetamine intake under extended access conditions, and intravenous methamphetamine self-administration-induced neurotoxicity. Adult rats were given access to WR or no wheel (sedentary) in their home cage for 6 weeks. A set of WR rats were injected with 5-bromo-2′-deoxyuridine (BrdU) to determine WR-induced changes in proliferation (2-h old) and survival (28-day old) of hippocampal progenitors. Another set of WR rats were withdrawn (WRw) or continued (WRc) to have access to running wheels in their home cages during self-administration days. Following self-administration [6 h/day], rats were tested on the progressive ratio (PR) schedule. Following PR, BrdU was injected to determine levels of proliferating progenitors (2-h old). WRc rats self-administered significantly less methamphetamine than sedentary rats during acquisition and escalation sessions, and demonstrated reduced motivation for methamphetamine seeking. Methamphetamine reduced daily running activity of WRc rats compared with that of pre-methamphetamine days. WRw rats self-administered significantly more methamphetamine than sedentary rats during acquisition, an effect that was not observed during escalation and PR sessions. WR-induced beneficial effects on methamphetamine self-administration were not attributable to neuroplasticity effects in the hippocampus and medial prefrontal cortex, but were attributable to WR-induced inhibition of methamphetamine-induced increases in the number of neuronal nitric oxide synthase expressing neurons and apoptosis in the nucleus accumbens shell. Our results demonstrate that WR prevents methamphetamine-induced damage to forebrain neurons to provide a beneficial effect on drug-taking behavior. Importantly, WR-induced neuroprotective effects are transient and continued WR activity is necessary to prevent compulsive methamphetamine intake.
Co-reporter:Patrick Recinto, Anjali Rose H Samant, Gustavo Chavez, Airee Kim, Clara J Yuan, Matthew Soleiman, Yanabel Grant, Scott Edwards, Sunmee Wee, George F Koob, Olivier George and Chitra D Mandyam
Neuropsychopharmacology 2012 37(5) pp:1275-1287
Publication Date(Web):December 28, 2011
DOI:10.1038/npp.2011.315
Methamphetamine affects the hippocampus, a brain region crucial for learning and memory, as well as relapse to drug seeking. Rats self-administered methamphetamine for 1 h twice weekly (intermittent-short-I-ShA), 1 h daily (limited-short-ShA), or 6 h daily (extended-long-LgA) for 22 sessions. After 22 sessions, rats from each access group were withdrawn from self-administration and underwent spatial memory (Y-maze) and working memory (T-maze) tests followed by extinction and reinstatement to methamphetamine seeking or received one intraperitoneal injection of 5-bromo-2′-deoxyuridine (BrdU) to label progenitors in the hippocampal subgranular zone (SGZ) during the synthesis phase. Two-hour-old and 28-day-old surviving BrdU-immunoreactive cells were quantified. I-ShA rats performed better on the Y-maze and had a greater number of 2-h-old SGZ BrdU cells than nondrug controls. LgA rats, but not ShA rats, performed worse on the Y- and T-maze and had a fewer number of 2-h-old SGZ BrdU cells than nondrug and I-ShA rats, suggesting that new hippocampal progenitors, decreased by methamphetamine, were correlated with impairment in the acquisition of new spatial cues. Analyses of addiction-related behaviors after withdrawal and extinction training revealed methamphetamine-primed reinstatement of methamphetamine-seeking behavior in all three groups (I-ShA, ShA, and LgA), and this effect was enhanced in LgA rats compared with I-ShA and ShA rats. Protracted withdrawal from self-administration enhanced the survival of SGZ BrdU cells, and methamphetamine seeking during protracted withdrawal enhanced Fos expression in the dentate gyrus and medial prefrontal cortex in LgA rats to a greater extent than in ShA and I-ShA rats. These results indicate that changes in the levels of the proliferation and survival of hippocampal neural progenitors and neuronal activation of hippocampal granule cells predict the effects of methamphetamine self-administration (limited vs extended access) on cognitive performance and relapse to drug seeking and may contribute to the impairments that perpetuate the addiction cycle.
Co-reporter:Roxanne W. Kotzebue;Michael A. Taffe;Rebecca D. Crean;Elena F. Crawford;Scott Edwards;Chitra D. Mandyam
PNAS 2010 Volume 107 (Issue 24 ) pp:11104-11109
Publication Date(Web):2010-06-15
DOI:10.1073/pnas.0912810107
Binge alcohol consumption in adolescents is increasing, and studies in animal models show that adolescence is a period of high vulnerability to brain insults. The purpose of the present study was to determine the deleterious effects of binge alcohol on hippocampal neurogenesis in adolescent nonhuman primates. Heavy binge alcohol consumption over 11 mo dramatically and persistently decreased hippocampal proliferation and neurogenesis. Combinatorial analysis revealed distinct, actively dividing hippocampal neural progenitor cell types in the subgranular zone of the dentate gyrus that were in transition from stem-like radial glia-like cells (type 1) to immature transiently amplifying neuroblasts (type 2a, type 2b, and type 3), suggesting the evolutionary conservation of milestones of neuronal development in macaque monkeys. Alcohol significantly decreased the number of actively dividing type 1, 2a, and 2b cell types without significantly altering the early neuronal type 3 cells, suggesting that alcohol interferes with the division and migration of hippocampal preneuronal progenitors. Furthermore, the lasting alcohol-induced reduction in hippocampal neurogenesis paralleled an increase in neural degeneration mediated by nonapoptotic pathways. Altogether, these results demonstrate that the hippocampal neurogenic niche during adolescence is highly vulnerable to alcohol and that alcohol decreases neuronal turnover in adolescent nonhuman primate hippocampus by altering the ongoing process of neuronal development. This lasting effect, observed 2 mo after alcohol discontinuation, may underlie the deficits in hippocampus-associated cognitive tasks that are observed in alcoholics.
Co-reporter:Heather N. Richardson, Stephanie H. Chan, Elena F. Crawford, Youn Kyung Lee, Cindy K. Funk, George F. Koob, Chitra D. Mandyam
Neurobiology of Disease (October 2009) Volume 36(Issue 1) pp:1-10
Publication Date(Web):1 October 2009
DOI:10.1016/j.nbd.2009.05.021
Experimenter-delivered alcohol decreases adult hippocampal neurogenesis and hippocampal-dependent learning and memory. The present study used clinically relevant rodent models of nondependent limited access alcohol self-administration and excessive drinking during alcohol dependence (alcohol self-administration followed by intermittent exposure to alcohol vapors over several weeks) to compare alcohol-induced effects on cortical gliogenesis and hippocampal neurogenesis. Alcohol dependence, but not nondependent drinking, reduced proliferation and survival in the medial prefrontal cortex (mPFC). Apoptosis was reduced in both alcohol groups within the mPFC, which may reflect an initiation of a reparative environment following alcohol exposure as decreased proliferation was abolished after prolonged dependence. Reduced proliferation, differentiation, and neurogenesis were observed in the hippocampus of both alcohol groups, and prolonged dependence worsened the effects. Increased hippocampal apoptosis and neuronal degeneration following alcohol exposure suggest a loss in neuronal turnover and indicate that the hippocampal neurogenic niche is highly vulnerable to alcohol.
Co-reporter:Sucharita S. Somkuwar, McKenzie J. Fannon-Pavlich, Atoosa Ghofranian, Jacqueline A. Quigley, Rahul R. Dutta, Melissa H. Galinato, Chitra D. Mandyam
Brain, Behavior, and Immunity (November 2016) Volume 58() pp:
Publication Date(Web):1 November 2016
DOI:10.1016/j.bbi.2016.08.006
•Protracted abstinence enhances ethanol seeking triggered by contexual cues.•Enhanced ethanol seeking is associated with oligodendrogenesis and neuroinflammatory responses in the mPFC.•Wheel running during abstinence prevents ethanol seeking triggered by contexual cues.•Reduced seeking is associated with reduced oligodendrogenesis and neuroinflammatory responses in the mPFC.The therapeutic effects of wheel running (WR) during abstinence on reinstatement of ethanol seeking behaviors in rats that self-administered ethanol only (ethanol drinking, ED) or ED with concurrent chronic intermittent ethanol vapor experience (CIE-ED) were investigated. Neuronal activation as well as oligodendroglial and neuroinflammatory factors were measured in the medial prefrontal cortex (mPFC) tissue to determine cellular correlates associated with enhanced ethanol seeking. CIE-ED rats demonstrated escalated and unregulated intake of ethanol and maintained higher drinking than ED rats during abstinence. CIE-ED rats were more resistant to extinction from ethanol self-administration, however, demonstrated similar ethanol seeking triggered by ethanol contextual cues compared to ED rats. Enhanced seeking was associated with reduced neuronal activation, and increased number of myelinating oligodendrocyte progenitors and PECAM-1 expression in the mPFC, indicating enhanced oligodendroglial and neuroinflammatory response during abstinence. WR during abstinence enhanced self-administration in ED rats, indicating a deprivation effect. WR reduced reinstatement of ethanol seeking in CIE-ED and ED rats, indicating protection against relapse. The reduced ethanol seeking was associated with enhanced neuronal activation, reduced number of myelinating oligodendrocyte progenitors, and reduced PECAM-1 expression. The current findings demonstrate a protective role of WR during abstinence in reducing ethanol seeking triggered by ethanol contextual cues and establish a role for oligodendroglia-neuroinflammatory response in ethanol seeking. Taken together, enhanced oligodendroglia-neuroinflammatory response during abstinence may contribute to brain trauma in chronic alcohol drinking subjects and be a risk factor for enhanced propensity for alcohol relapse.
Co-reporter:Chitra D. Mandyam, George F. Koob
Trends in Neurosciences (April 2012) Volume 35(Issue 4) pp:250-260
Publication Date(Web):1 April 2012
DOI:10.1016/j.tins.2011.12.005
Addiction is a chronic relapsing disorder associated with compulsive drug taking, drug seeking and a loss of control in limiting intake, reflected in three stages of a recurrent cycle: binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation (“craving”). This review discusses the role of adult-born neural and glial progenitors in drug seeking associated with the different stages of the addiction cycle. A review of the current literature suggests that the loss of newly born progenitors, particularly in hippocampal and cortical regions, plays a role in determining vulnerability to relapse in rodent models of drug addiction. The normalization of drug-impaired neurogenesis or gliogenesis may help reverse neuroplasticity during abstinence and, thus, may help reduce the vulnerability to relapse and aid recovery.
Co-reporter:Miranda C. Staples, McKenzie J. Fannon, Karthik K. Mysore, Rahul R. Dutta, Alexandria T. Ongjoco, Leon W. Quach, Khush M. Kharidia, Sucharita S. Somkuwar, Chitra D. Mandyam
Brain Research (15 May 2017) Volume 1663() pp:59-65
Publication Date(Web):15 May 2017
DOI:10.1016/j.brainres.2017.02.028
•DR differentially modulates proliferation and survival in the DG.•DR differentially effects density of GCNs along the dorso-ventral axis.•DR does not alter density of mossy fiber projections in the DG.The hippocampal formation undergoes significant morphological and functional changes after prolonged caloric and dietary restriction (DR). In this study we tested whether prolonged DR results in deleterious alterations in hippocampal neurogenesis, density of granule cell neurons and mossy fibers, all of which support plasticity in the dentate gyrus. Young adult animals either experienced free access to food (control condition), or every-other-day feeding regimen (DR condition) for 3 months. The number of Ki-67 cells and 28-day old 5-bromo-2′-deoxyuridine (BrdU) cells were quantified in the dorsal and ventral dentate gyrus to determine the effect of DR on cellular proliferation and survival of neural progenitor cells in the anatomically defined regions of the dentate gyrus. The density of granule cell neurons and synaptoporin were also quantified to determine the effect of DR on granule cell neurons and mossy fiber projections in the dentate gyrus. Our results show that DR increases cellular proliferation and concurrently reduces survival of newly born neurons in the ventral dentate gyrus without effecting the number of cells in the dorsal dentate gyrus. DR reduced density of granule cell neurons in the dorsal dentate gyrus. These alterations in the number of granule cell neurons did not affect mossy fiber density in DR animals, which was visualized as no differences in synaptoporin expression. Our findings demonstrate that granule cell neurons in the dentate gyrus are vulnerable to chronic DR and that the reorganization of granule cells in the dentate gyrus subregions is not producing concomitant alterations in dentate gyrus neuronal circuitry with this type of DR.
Caspase-3
8-Azabicyclo[3.2.1]octane-2-carboxylicacid, 3-(benzoyloxy)-8-methyl-, methyl ester, hydrochloride (1:1),(1R,2R,3S,5S)-
D-deoxyephedrine hydrochloride
Uridine,5-chloro-2'-deoxy-
(S)-3-(1-Methylpyrrolidin-2-yl)pyridine
Methyl (3s,4r)-3-benzoyloxy-8-methyl-8-azabicyclo[3.2.1]octane-4-carboxylate