Co-reporter:Mohamad Nazari, Jeffrey D. Serrill, Justyna Sikorska, Tao Ye, Jane E. Ishmael, and Kerry L. McPhail
Organic Letters 2016 Volume 18(Issue 6) pp:1374-1377
Publication Date(Web):February 25, 2016
DOI:10.1021/acs.orglett.6b00308
Recollection of the tunicate source of the mandelalides has provided new and known analogues that have facilitated expanded analyses of the disputed cancer cytotoxicity of mandelalide A following a number of recent reported total syntheses. Using newly characterized mandelalide E, reisolated natural mandelalides B and C, and synthetic mandelalide A, the cytotoxicity of the mandelalides is demonstrated to be strongly influenced by compound glycosylation and assay cell density. Glycosylated mandelalides reduced the viability of human cancer cells cultured at a high starting density with a rank order of potency A > B ≫ E, yet display dramatically reduced cytotoxic efficacy against low density cultures.
Co-reporter:Kevin M. Snyder, Justyna Sikorska, Tao Ye, Lijing Fang, Wu Su, Rich G. Carter, Kerry L. McPhail and Paul H.-Y. Cheong
Organic & Biomolecular Chemistry 2016 vol. 14(Issue 24) pp:5826-5831
Publication Date(Web):06 May 2016
DOI:10.1039/C6OB00707D
The effectiveness of computational tools in determining relative configurations of complex molecules is investigated, using natural products mandelalides A–D and coibamide A, towards a generalized recipe for the scientific community at large. Ultimately, continuing efforts in this vein will accelerate and strengthen relative structure elucidation of complex molecules, such as natural products. Molecular mechanics conformational search, quantum mechanical NMR chemical shift predictions, and DP4 analyses led to confirmation of the revised structures of mandelalides A–D and coibamide A. All chiral centers in the northern hemisphere of mandelalides A–D are inverted with respect to the originally proposed structures, in agreement with recent total syntheses of mandelalide A by Ye, Fürstner & Carter. In the case of coibamide A, it was found that Fang & Su's revision, in which both the macrocycle [MeAla11] and the side chain [HIV2] residues are inverted from L to D, was consistent with the authentic natural product and computations.
Co-reporter:Oliver B. Vining, Rebecca A. Medina, Edward A. Mitchell, Patrick Videau, Dong Li, Jeffrey D. Serrill, Jane X. Kelly, William H. Gerwick, Philip J. Proteau, Jane E. Ishmael, and Kerry L. McPhail
Journal of Natural Products 2015 Volume 78(Issue 3) pp:413-420
Publication Date(Web):January 6, 2015
DOI:10.1021/np5007907
Two new cyclic depsipeptides, companeramides A (1) and B (2), have been isolated from the phylogenetically characterized cyanobacterial collection that yielded the previously reported cancer cell toxin coibamide A (collected from Coiba Island, Panama). The planar structures of the companeramides, which contain 3-amino-2-methyl-7-octynoic acid (Amoya), hydroxy isovaleric acid (Hiva), and eight α-amino acid units, were established by NMR spectroscopy and mass spectrometry. The absolute configuration of each companeramide was assigned using a combination of Marfey’s methodology and chiral-phase HPLC analysis of complete and partial hydrolysis products compared to commercial and synthesized standards. Companeramides A (1) and B (2) showed high nanomolar in vitro antiplasmodial activity but were not overtly cytotoxic to four human cancer cell lines at the doses tested.
Co-reporter:Christopher C. Thornburg, Elise S. Cowley, Justyna Sikorska, Lamiaa A. Shaala, Jane E. Ishmael, Diaa T. A. Youssef, and Kerry L. McPhail
Journal of Natural Products 2013 Volume 76(Issue 9) pp:1781-1788
Publication Date(Web):September 9, 2013
DOI:10.1021/np4004992
Cultivation of the marine cyanobacterium Moorea producens, collected from the Nabq Mangroves in the Gulf of Aqaba (Red Sea), led to the isolation of new apratoxin analogues apratoxin H (1) and apratoxin A sulfoxide (2), together with the known apratoxins A–C, lyngbyabellin B, and hectochlorin. The absolute configuration of these new potent cytotoxins was determined by chemical degradation, MS, NMR, and CD spectroscopy. Apratoxin H (1) contains pipecolic acid in place of the proline residue present in apratoxin A, expanding the known suite of naturally occurring analogues that display amino acid substitutions within the final module of the apratoxin biosynthetic pathway. The oxidation site of apratoxin A sulfoxide (2) was deduced from MS fragmentation patterns and IR data, and 2 could not be generated experimentally by oxidation of apratoxin A. The cytotoxicity of 1 and 2 to human NCI-H460 lung cancer cells (IC50 = 3.4 and 89.9 nM, respectively) provides further insight into the structure–activity relationships in the apratoxin series. Phylogenetic analysis of the apratoxin-producing cyanobacterial strains belonging to the genus Moorea, coupled with the recently annotated apratoxin biosynthetic pathway, supports the notion that apratoxin production and structural diversity may be specific to their geographical niche.
Co-reporter:Justyna Sikorska ; Shirley Parker-Nance ; Michael T. Davies-Coleman ; Oliver B. Vining ; Aleksandra E. Sikora ;Kerry L. McPhail
Journal of Natural Products 2012 Volume 75(Issue 10) pp:1824-1827
Publication Date(Web):October 2, 2012
DOI:10.1021/np300580z
The CH2Cl2–MeOH extract of a South African tunicate described as the new Synoicum globosum Parker-Nance sp. nov. (Ascidiacea, Aplousobranchia) was subjected to 1H NMR-guided fractionation. This resulted in the identification of new 3″-bromorubrolide F (1), 3′-bromorubrolide E (2), 3′-bromorubrolide F (3), and 3′,3″-dibromorubrolide E (4) and reisolation of known rubrolides E (5) and F (6), based on NMR spectroscopic and mass spectrometric data. Biological testing of both new and known members of this reported antimicrobial family of halogenated, aryl-substituted furanones indicated moderate antibacterial properties for 3′-bromorubrolide E (2), 3′,3″-dibromorubrolide E (4), and rubrolide F (6) against methicillin-resistant Staphylococcus aureus (MRSA) and S. epidermidis.
Co-reporter:Justyna Sikorska, Andrew M. Hau, Clemens Anklin, Shirley Parker-Nance, Michael T. Davies-Coleman, Jane E. Ishmael, and Kerry L. McPhail
The Journal of Organic Chemistry 2012 Volume 77(Issue 14) pp:6066-6075
Publication Date(Web):June 19, 2012
DOI:10.1021/jo3008622
Mandelalides A–D are variously glycosylated, unusual polyketide macrolides isolated from a new species of Lissoclinum ascidian collected from South Africa, Algoa Bay near Port Elizabeth and the surrounding Nelson Mandela Metropole. Their planar structures were elucidated on submilligram samples by comprehensive analysis of 1D and 2D NMR data, supported by mass spectrometry. The assignment of relative configuration was accomplished by consideration of homonuclear and heteronuclear coupling constants in tandem with ROESY data. The absolute configuration was assigned for mandelalide A after chiral GC-MS analysis of the hydrolyzed monosaccharide (2-O-methyl-α-l-rhamnose) and consideration of ROESY correlations between the monosaccharide and aglycone in the intact natural product. The resultant absolute configuration of the mandelalide A macrolide was extrapolated to propose the absolute configurations of mandelalides B–D. Remarkably, mandelalide B contained the C-4′ epimeric 2-O-methyl-6-dehydro-α-l-talose. Mandelalides A and B showed potent cytotoxicity to human NCI-H460 lung cancer cells (IC50, 12 and 44 nM, respectively) and mouse Neuro-2A neuroblastoma cells (IC50, 29 and 84 nM, respectively).
Co-reporter:Christopher C. Thornburg ; Muralidhara Thimmaiah ; Lamiaa A. Shaala ; Andrew M. Hau ; Jay M. Malmo ; Jane E. Ishmael ; Diaa T. A. Youssef ;Kerry L. McPhail
Journal of Natural Products 2011 Volume 74(Issue 8) pp:1677-1685
Publication Date(Web):August 1, 2011
DOI:10.1021/np200270d
Two new grassypeptolides and a lyngbyastatin analogue, together with the known dolastatin 12, have been isolated from field collections and laboratory cultures of the marine cyanobacterium Leptolyngbya sp. collected from the SS Thistlegorm shipwreck in the Red Sea. The overall stereostructures of grassypeptolides D (1) and E (2) and Ibu-epidemethoxylyngbyastatin 3 (3) were determined by a combination of 1D and 2D NMR experiments, MS analysis, Marfey’s methodology, and HPLC-MS. Compounds 1 and 2 contain 2-methyl-3-aminobutyric acid and 2-aminobutyric acid, while biosynthetically distinct 3 contains 3-amino-2-methylhexanoic acid and the β-keto amino acid 4-amino-2,2-dimethyl-3-oxopentanoic acid (Ibu). Grassypeptolides D (1) and E (2) showed significant cytotoxicity to HeLa (IC50 = 335 and 192 nM, respectively) and mouse neuro-2a blastoma cells (IC50 = 599 and 407 nM, respectively), in contrast to Ibu-epidemethoxylyngbyastatin 3 (neuro-2a cells, IC50 > 10 μM) and dolastatin 12 (neuro-2a cells, IC50 > 1 μM).
Co-reporter:Takashi L. Suyama, William H. Gerwick, Kerry L. McPhail
Bioorganic & Medicinal Chemistry 2011 Volume 19(Issue 22) pp:6675-6701
Publication Date(Web):15 November 2011
DOI:10.1016/j.bmc.2011.06.011
The structural assignment of new natural product molecules supports research in a multitude of disciplines that may lead to new therapeutic agents and or new understanding of disease biology. However, reports of numerous structural revisions, even of recently elucidated natural products, inspired the present survey of techniques used in structural misassignments and subsequent revisions in the context of constitutional or configurational errors. Given the comparatively recent development of marine natural products chemistry, coincident with modern spectroscopy, it is of interest to consider the relative roles of spectroscopy and chemical synthesis in the structure elucidation and revision of those marine natural products that were initially misassigned. Thus, a tabulated review of all marine natural product structural revisions from 2005 to 2010 is organized according to structural motif revised. Misassignments of constitution are more frequent than perhaps anticipated by reliance on HMBC and other advanced NMR experiments, especially when considering the full complement of all natural products. However, these techniques also feature prominently in structural revisions, specifically of marine natural products. Nevertheless, as is the case for revision of relative and absolute configuration, total synthesis is a proven partner for marine, as well as terrestrial, natural products structure elucidation. It also becomes apparent that considerable ‘detective work’ remains in structure elucidation, in spite of the spectacular advances in spectroscopic techniques.
Co-reporter:Christopher C. Thornburg, T. Mark Zabriskie and Kerry L. McPhail
Journal of Natural Products 2010 Volume 73(Issue 3) pp:489-499
Publication Date(Web):January 25, 2010
DOI:10.1021/np900662k
Deep-sea hydrothermal vents are among the most extreme and dynamic environments on Earth. However, islands of highly dense and biologically diverse communities exist in the immediate vicinity of hydrothermal vent flows, in stark contrast to the surrounding bare seafloor. These communities comprise organisms with distinct metabolisms based on chemosynthesis and growth rates comparable to those from shallow water tropical environments, which have been rich sources of biologically active natural products. The geological setting and geochemical nature of deep-sea vents that impact the biogeography of vent organisms, chemosynthesis, and the known biological and metabolic diversity of Eukarya, Bacteria, and Archaea, including the handful of natural products isolated to date from deep-sea vent organisms, are considered here in an assessment of deep-sea hydrothermal vents as potential hot spots for natural products investigations. Of critical importance too are the logistics of collecting deep vent organisms, opportunities for re-collection considering the stability and longevity of vent sites, and the ability to culture natural product-producing deep vent organisms in the laboratory. New cost-effective technologies in deep-sea research and more advanced molecular techniques aimed at screening a more inclusive genetic assembly are poised to accelerate natural product discoveries from these microbial diversity hot spots.
Co-reporter:Kerry L. McPhail, Donald J. Armstrong, Mark D. Azevedo, Gary M. Banowetz, and Dallice I. Mills
Journal of Natural Products 2010 Volume 73(Issue 11) pp:1853-1857
Publication Date(Web):October 27, 2010
DOI:10.1021/np1004856
A new oxyvinylglycine has been identified as a naturally occurring herbicide that irreversibly arrests germination of the seeds of grassy weeds, such as annual bluegrass (Poa annua), without significantly affecting the growth of established grass seedlings and mature plants or germination of the seeds of broadleaf plant species (dicots). Previously, Pseudomonas fluorescens WH6 and over 20 other rhizosphere bacteria were isolated and selected for their ability to arrest germination of P. annua seeds. The germination-arrest factor (GAF, 1) responsible for this developmentally specific herbicidal action has now been isolated from the culture filtrate of P. fluorescens WH6. Purification of this highly polar, low molecular weight natural product allowed its structure to be assigned as 4-formylaminooxy-l-vinylglycine on the basis of NMR spectroscopic and mass spectrometric data, in combination with d/l-amino acid oxidase reactions to establish the absolute configuration. Assay results for P. annua inhibition by related compounds known to regulate plant growth are presented, and a cellular target for 1 is proposed. Furthermore, using bioassays, TLC, and capillary NMR spectroscopy, it has been shown that GAF (1) is secreted by all other herbicidally active rhizosphere bacteria in our collection.
Co-reporter:Kevin M. Snyder, Justyna Sikorska, Tao Ye, Lijing Fang, Wu Su, Rich G. Carter, Kerry L. McPhail and Paul H.-Y. Cheong
Organic & Biomolecular Chemistry 2016 - vol. 14(Issue 24) pp:NaN5831-5831
Publication Date(Web):2016/05/06
DOI:10.1039/C6OB00707D
The effectiveness of computational tools in determining relative configurations of complex molecules is investigated, using natural products mandelalides A–D and coibamide A, towards a generalized recipe for the scientific community at large. Ultimately, continuing efforts in this vein will accelerate and strengthen relative structure elucidation of complex molecules, such as natural products. Molecular mechanics conformational search, quantum mechanical NMR chemical shift predictions, and DP4 analyses led to confirmation of the revised structures of mandelalides A–D and coibamide A. All chiral centers in the northern hemisphere of mandelalides A–D are inverted with respect to the originally proposed structures, in agreement with recent total syntheses of mandelalide A by Ye, Fürstner & Carter. In the case of coibamide A, it was found that Fang & Su's revision, in which both the macrocycle [MeAla11] and the side chain [HIV2] residues are inverted from L to D, was consistent with the authentic natural product and computations.