Co-reporter:Takuma Furusawa;Dr. Tsumoru Morimoto;Dr. Yasuhiro Nishiyama;Dr. Hiroki Tanimoto ;Dr. Kiyomi Kakiuchi
Chemistry – An Asian Journal 2016 Volume 11( Issue 16) pp:2312-2315
Publication Date(Web):
DOI:10.1002/asia.201600802
Abstract
Synthesis of fluoren-9-ones by a Rh-catalyzed intramolecular C−H/C−I carbonylative coupling of 2-iodobiphenyls using furfural as a carbonyl source is presented. The findings indicate that the rate-determining step is not a C−H bond cleavage but, rather, the oxidative addition of the C−I bond to a RhI center.
Co-reporter:Tsumoru Morimoto, Tetsuji Fujii, Kota Miyoshi, Gouki Makado, Hiroki Tanimoto, Yasuhiro Nishiyama and Kiyomi Kakiuchi
Organic & Biomolecular Chemistry 2015 vol. 13(Issue 16) pp:4632-4636
Publication Date(Web):12 Mar 2015
DOI:10.1039/C5OB00378D
We report herein on an accessible protocol for the asymmetric hydroformylation of vinylarenes using formaldehyde as a substitute for syngas. The regioselectivity (branched/linear = up to 96/4) and enantioselectivity (up to 95% ee) can be attributed to the use of chiral Ph-bpe as a ligand.
Co-reporter:Takuma Furusawa, Tsumoru Morimoto, Keiichi Ikeda, Hiroki Tanimoto, Yasuhiro Nishiyama, Kiyomi Kakiuchi, Nakcheol Jeong
Tetrahedron 2015 Volume 71(Issue 5) pp:875-881
Publication Date(Web):4 February 2015
DOI:10.1016/j.tet.2014.12.038
A dual neutral-cationic rhodium(I)-catalyzed Pauson–Khand-type reaction using formaldehyde as a carbonyl source is described. The simultaneous use of neutral rhodium(I) and cationic rhodium(I) complexes is required for efficient cooperative catalysis, which involves the neutral rhodium(I)-catalyzed decarbonylation of formaldehyde and the cationic rhodium(I)-catalyzed cyclocarbonylation of 1,6-enynes using the resulting carbonyl moiety.
Co-reporter:Masahiko Fujioka, Tsumoru Morimoto, Takayuki Tsumagari, Hiroki Tanimoto, Yasuhiro Nishiyama, and Kiyomi Kakiuchi
The Journal of Organic Chemistry 2012 Volume 77(Issue 6) pp:2911-2923
Publication Date(Web):February 23, 2012
DOI:10.1021/jo300201g
A highly efficient and accessible synthesis of chiral 3-substituted isoindolinone frameworks is described. The synthesis involved the Rh(I)-catalyzed asymmetric arylation of boronic acids to 2-halobenzaldimines and the subsequent Rh(I)-catalyzed intramolecular aminocarbonylation of the resulting 2-halobenzylamines using an aldehyde as the carbonyl source. The method tolerates a variety of functional groups, yielding isoindolinone derivatives in moderate to high yields with high ee-values. In addition, two Rh(I)-catalyzed transformations could be efficiently accomplished in a one-pot sequence to give chiral isoindolinones by the simple addition of a ligand and an aldehyde after the Rh(I)-catalyzed asymmetric arylation.
Co-reporter:Gouki Makado;Yasuko Sugimoto;Ken Tsutsumi;Natsuko Kagawa;Kiyomi Kakiuchi
Advanced Synthesis & Catalysis 2010 Volume 352( Issue 2-3) pp:299-304
Publication Date(Web):
DOI:10.1002/adsc.200900713
Abstract
A highly linear-selective hydroformylation of 1-alkenes using formaldehyde without the direct use of syngas is described. One rhodium(I) complex catalyzes two processes in the overall hydroformylation of 1-alkenes using formaldehyde as the syngas substitute to give hydroformylated aldehydes with excellent regioselectivities. A high regioselectivity (linear/branched=up to 98/2) and chemical yield (up to 95%) can be achieved by the simultaneous use of two types of phosphanes as ligands.
Co-reporter:Keiichi Ikeda, Tsumoru Morimoto, and Kiyomi Kakiuchi
The Journal of Organic Chemistry 2010 Volume 75(Issue 18) pp:6279-6282
Publication Date(Web):August 25, 2010
DOI:10.1021/jo1012288
The reaction of enynes with acetyl-masked aldoses in the presence of a rhodium(I) catalyst resulted in cyclocarbonylation, thus avoiding the direct use of carbon monoxide, to afford bicyclic cyclopentenones. In rhodium catalysis, aldoses serve as a carbon monoxide equivalent by donating their carbonyl moieties on the acyclic aldehyde form to enynes. A variety of aldoses, including d-glucose, d-mannose, d-galactose, d-xylose, and d-ribose, can be used as a carbonyl source. Using the method, a wide variety of enynes were cyclocarbonylated in 22−67% yields. An asymmetric variant also proceeded with moderate to high enantioselectivity.
Co-reporter:Tsumoru Morimoto, Kae Yamasaki, Akihisa Hirano, Ken Tsutsumi, Natsuko Kagawa, Kiyomi Kakiuchi, Yasuyuki Harada, Yoshiya Fukumoto, Naoto Chatani and Takanori Nishioka
Organic Letters 2009 Volume 11(Issue 8) pp:1777-1780
Publication Date(Web):March 20, 2009
DOI:10.1021/ol900327x
The rhodium(I)-catalyzed reaction of alkynes with 2-bromophenylboronic acids in the presence of paraformaldehyde resulted in a CO gas-free carbonylative cyclization, yielding indenone derivatives. [RhCl(BINAP)]2 and [RhCl(cod)]2 were responsible for the decarbonylation of formaldehyde and the subsequent carbonylation of alkynes with 2-haloboronic acids, respectively, leading to efficient whole carbonylation. Sterically bulky and electron-withdrawing groups on unsymmetrically substituted alkynes favored the α-position of indenones.
Co-reporter:Koji Fuji, Tsumoru Morimoto, Ken Tsutsumi and Kiyomi Kakiuchi
Chemical Communications 2005 (Issue 26) pp:3295-3297
Publication Date(Web):01 Jun 2005
DOI:10.1039/B503816B
The rhodium(I)-catalyzed reaction of alkynes with formaldehyde proceeds via the double incorporation of a carbonyl moiety from formaldehyde, resulting in a CO gas-free cyclohydrocarbonylation leading to α,β-butenolides.
Co-reporter:Tsumoru Morimoto ;Kiyomi Kakiuchi
Angewandte Chemie 2004 Volume 116(Issue 42) pp:
Publication Date(Web):1 SEP 2004
DOI:10.1002/ange.200301736
Erste bahnbrechende Erfolge in der metallorganischen Katalyse gelangen mit der Entdeckung der Roelen-Reaktion 1938 (Hydroformylierung mit Kohlenmonoxid und Wasserstoff) und der Reppe-Reaktion 1939 (Hydrocarboxylierung mit Kohlenmonoxid und Wasser). Seither haben Carbonylierungen mit Kohlenmonoxid einen festen Platz in der metallorganischen Chemie und der organischen Synthese. Allerdings ist die Verwendung von gasförmigem Kohlenmonoxid problematisch (toxisches Treibhausgas), sodass in neuerer Zeit Strategien zur Verwendung anderer Carbonylierungsreagentien entwickelt wurden. Dieser Kurzaufsatz beschreibt Carbonylierungen, die ohne direkten Einsatz von Kohlenmonoxid durchgeführt werden können.
Co-reporter:Tsumoru Morimoto ;Kiyomi Kakiuchi
Angewandte Chemie International Edition 2004 Volume 43(Issue 42) pp:
Publication Date(Web):1 SEP 2004
DOI:10.1002/anie.200301736
Progress in organometallic catalysis began with the discovery of the Roelen reaction (hydroformylation with carbon monoxide and hydrogen) in 1938 and the Reppe reaction (hydrocarboxylation with carbon monoxide and water) in 1939. Since then, carbonylation chemistry by using carbon monoxide has occupied a central position in organometallic chemistry, as it relates to organic synthesis. There is, however, the problem of using gaseous carbon monoxide (a toxic greenhouse gas) in this chemistry. Recently, some strategies that address this issue have appeared. This minireview describes carbonylation reactions that can be conducted without the direct use of carbon monoxide. These carbonylation reactions provide reliable and accessible tools for synthetic organic chemists.
Co-reporter:Tsumoru Morimoto, Tetsuji Fujii, Kota Miyoshi, Gouki Makado, Hiroki Tanimoto, Yasuhiro Nishiyama and Kiyomi Kakiuchi
Organic & Biomolecular Chemistry 2015 - vol. 13(Issue 16) pp:NaN4636-4636
Publication Date(Web):2015/03/12
DOI:10.1039/C5OB00378D
We report herein on an accessible protocol for the asymmetric hydroformylation of vinylarenes using formaldehyde as a substitute for syngas. The regioselectivity (branched/linear = up to 96/4) and enantioselectivity (up to 95% ee) can be attributed to the use of chiral Ph-bpe as a ligand.