Elizabeth M. Nolan

Find an error

Name: Nolan, Elizabeth
Organization: Massachusetts Institute of Technology , USA
Department: Department of Chemistry
Title: Associate(PhD)

TOPICS

Co-reporter:Lisa S. Cunden, Megan Brunjes Brophy, Grayson E. Rodriguez, Hope A. Flaxman, and Elizabeth M. Nolan
Biochemistry October 31, 2017 Volume 56(Issue 43) pp:5726-5726
Publication Date(Web):October 4, 2017
DOI:10.1021/acs.biochem.7b00781
Human S100A7 (psoriasin) is a metal-chelating protein expressed by epithelial cells. It is a 22-kDa homodimer with two EF-hand domains per subunit and two transition-metal-binding His3Asp sites at the dimer interface. Each subunit contains two cysteine residues that can exist as free thiols (S100A7red) or as an intramolecular disulfide bond (S100A7ox). Herein, we examine the disulfide bond redox behavior, the Zn(II) binding properties, and the antibacterial activity of S100A7, as well as the effect of Ca(II) ions on these properties. In agreement with prior work [Hein, K. Z., et al. (2013) Proc. Natl. Acad. Sci. U. S. A. 112, 13039–13044], we show that apo S100A7ox is a substrate for the mammalian thioredoxin system; however, negligible reduction of the disulfide bond is observed for Ca(II)- and Zn(II)-bound S100A7ox. Furthermore, metal binding depresses the midpoint potential of the disulfide bond. S100A7ox and S100A7red each coordinate 2 equiv of Zn(II) with subnanomolar affinity in the absence and presence of Ca(II) ions, and the cysteine thiolates in S100A7red do not form a third high-affinity Zn(II) site. These results refute a prior model implicating the Cys thiolates of S100A7red in high-affinity Zn(II) binding [Hein, K. Z., et al. (2013) Proc. Natl. Acad. Sci. U. S. A. 112, 13039–13044]. S100A7ox and the disulfide-null variants show comparable Zn(II)-depletion profiles; however, only S100A7ox exhibits antibacterial activity against select bacterial species. Metal substitution experiments suggest that the disulfide bonds in S100A7 may enhance metal sequestration by the His3Asp sites and thereby confer growth inhibitory properties to S100A7ox.
Co-reporter:Timothy C. Johnstone and Elizabeth M. Nolan
Journal of the American Chemical Society October 25, 2017 Volume 139(Issue 42) pp:15245-15245
Publication Date(Web):September 28, 2017
DOI:10.1021/jacs.7b09375
Enterobactin is a secondary metabolite produced by Enterobacteriaceae for acquiring iron, an essential metal nutrient. The biosynthesis and utilization of enterobactin permits many Gram-negative bacteria to thrive in environments where low soluble iron concentrations would otherwise preclude survival. Despite extensive work carried out on this celebrated molecule since its discovery over 40 years ago, the ferric enterobactin complex has eluded crystallographic structural characterization. We report the successful growth of single crystals containing ferric enterobactin using racemic crystallization, a method that involves cocrystallization of a chiral molecule with its mirror image. The structures of ferric enterobactin and ferric enantioenterobactin obtained in this work provide a definitive assignment of the stereochemistry at the metal center and reveal secondary coordination sphere interactions. The structures were employed in computational investigations of the interactions of these complexes with two enterobactin-binding proteins, which illuminate the influence of metal-centered chirality on these interactions. This work highlights the utility of small-molecule racemic crystallography for obtaining elusive structures of coordination complexes.
Co-reporter:Toshiki G. Nakashige, Emily M. Zygiel, Catherine L. Drennan, and Elizabeth M. Nolan
Journal of the American Chemical Society July 5, 2017 Volume 139(Issue 26) pp:8828-8828
Publication Date(Web):June 2, 2017
DOI:10.1021/jacs.7b01212
The human innate immune protein calprotectin (CP, S100A8/S100A9 oligomer, calgranulin A/calgranulin B oligomer, MRP-8/MRP-14 oligomer) chelates a number of first-row transition metals, including Mn(II), Fe(II), and Zn(II), and can withhold these essential nutrients from microbes. Here we elucidate the Ni(II) coordination chemistry of human CP. We present a 2.6-Å crystal structure of Ni(II)- and Ca(II)-bound CP, which reveals that CP binds Ni(II) ions at both its transition-metal-binding sites: the His3Asp motif (site 1) and the His6 motif (site 2). Further biochemical studies establish that coordination of Ni(II) at the hexahistidine site is thermodynamically preferred over Zn(II). We also demonstrate that CP can sequester Ni(II) from two human pathogens, Staphylococcus aureus and Klebsiella pneumoniae, that utilize this metal nutrient during infection, and inhibit the activity of the Ni(II)-dependent enzyme urease in bacterial cultures. In total, our findings expand the biological coordination chemistry of Ni(II)-chelating proteins in nature and provide a foundation for evaluating putative roles of CP in Ni(II) homeostasis at the host–microbe interface and beyond.
Co-reporter:Toshiki G. Nakashige
Metallomics (2009-Present) 2017 vol. 9(Issue 8) pp:1086-1095
Publication Date(Web):2017/08/16
DOI:10.1039/C7MT00044H
We report that the metal-sequestering human host-defense protein calprotectin (CP, S100A8/S100A9 oligomer) affects the redox speciation of iron (Fe) in bacterial growth media and buffered aqueous solution. Under aerobic conditions and in the absence of an exogenous reducing agent, CP-Ser (S100A8(C42S)/S100A9(C3S) oligomer) depletes Fe from three different bacterial growth media preparations over a 48 h timeframe (T = 30 °C). The presence of the reducing agent β-mercaptoethanol accelerates this process and allows CP-Ser to deplete Fe over a ≈1 h timeframe. Fe-depletion assays performed with metal-binding-site variants of CP-Ser show that the hexahistidine (His6) site, which coordinates Fe(II) with high affinity, is required for Fe depletion. An analysis of Fe redox speciation in buffer containing Fe(III) citrate performed under aerobic conditions demonstrates that CP-Ser causes a time-dependent increase in the [Fe(II)]/[Fe(III)] ratio. Taken together, these results indicate that the hexahistidine site of CP stabilizes Fe(II) and thereby shifts the redox equilibrium of Fe to the reduced ferrous state under aerobic conditions. We also report that the presence of bacterial metabolites affects the Fe-depleting activity of CP-Ser. Supplementation of bacterial growth media with an Fe(III)-scavenging siderophore (enterobactin, staphyloferrin B, or desferrioxamine B) attenuates the Fe-depleting activity of CP-Ser. This result indicates that formation of Fe(III)–siderophore complexes blocks CP-mediated reduction of Fe(III) and hence the ability of CP to coordinate Fe(II). In contrast, the presence of pyocyanin (PYO), a redox-cycling phenazine produced by Pseudomonas aeruginosa that reduces Fe(III) to Fe(II), accelerates Fe depletion by CP-Ser under aerobic conditions. These findings indicate that the presence of microbial metabolites that contribute to metal homeostasis at the host/pathogen interface can affect the metal-sequestering function of CP.
Co-reporter:Tessa M. Baker;Toshiki G. Nakashige;Michael L. Neidig
Chemical Science (2010-Present) 2017 vol. 8(Issue 2) pp:1369-1377
Publication Date(Web):2017/01/30
DOI:10.1039/C6SC03487J
Calprotectin (CP) is an abundant metal-chelating protein involved in host defense, and the ability of human CP to bind Fe(II) in a calcium-dependent manner was recently discovered. In the present study, near-infrared magnetic circular dichroism spectroscopy is employed to investigate the nature of Fe(II) coordination at the two transition-metal-binding sites of CP that are a His3Asp motif (site 1) and a His6 motif (site 2). Upon the addition of sub-stoichiometric Fe(II), a six-coordinate (6C) Fe(II) center associated with site 2 is preferentially formed in the presence of excess Ca(II). This site exhibits an exceptionally large ligand field (10Dq = 11 045 cm−1) for a non-heme Fe(II) protein. Analysis of CP variants lacking residues of the His6 motif supports that CP coordinates Fe(II) at site 2 by employing six His ligands. In the presence of greater than one equiv. of Fe(II) or upon mutation of the His6 motif, the metal ion also binds at site 1 of CP to form a five-coordinate (5C) Fe(II)–His3Asp motif that was previously unidentified in this system. Notably, the introduction of His-to-Ala mutations at the His6 motif results in a mixture of 6C (site 2) and 5C (site 1) signals in the presence of sub-stoichiometric Fe(II). These results are consistent with a reduced Fe(II)-binding affinity of site 2 as more weakly coordinating water-derived ligands complete the 6C site. In the absence of Ca(II), both sites 1 and 2 are occupied upon addition of sub-stoichiometric Fe(II), and a stronger ligand field is observed for the 5C site. These spectroscopic studies provide further evaluation of a unique non-heme Fe(II)–His6 site for metalloproteins and support the notion that Ca(II) ions influence the Fe(II)-binding properties of CP.
Co-reporter:Phoom Chairatana, I-Ling Chiang, and Elizabeth M. Nolan
Biochemistry 2017 Volume 56(Issue 8) pp:
Publication Date(Web):December 27, 2016
DOI:10.1021/acs.biochem.6b01111
Human α-defensin 6 (HD6) is a host-defense peptide that contributes to intestinal innate immunity and mediates homeostasis at mucosal surfaces by forming noncovalent oligomers that capture bacteria and prevent bacterial invasion of the epithelium. This work illustrates a new role of HD6 in defending the host epithelium against pathogenic microorganisms. We report that HD6 blocks adhesion of Candida albicans to human intestinal epithelial cells and suppresses two C. albicans virulence traits, namely, invasion of human epithelial cells and biofilm formation. Moreover, a comparison of HD6 and a single-point variant F2A that does not form higher-order oligomers demonstrates that the self-assembly properties of HD6 are essential for functional activity against C. albicans. This opportunistic fungal pathogen, which resides in the intestine as a member of the gut microbiota in healthy individuals, can turn virulent and cause a variety of diseases ranging from superficial infections to life-threatening systemic infections. Our results indicate that HD6 may allow C. albicans to persist as a harmless commensal in the gastrointestinal tract. Moreover, HD6 and HD6-inspired molecules may provide a foundation for exploring new antimicrobial strategies that attenuate the virulence traits of C. albicans and other microbial pathogens.
Co-reporter:Toshiki G. Nakashige, Jules R. Stephan, Lisa S. Cunden, Megan Brunjes Brophy, Andrew J. Wommack, Brenna C. Keegan, Jason M. Shearer, and Elizabeth M. Nolan
Journal of the American Chemical Society 2016 Volume 138(Issue 37) pp:12243-12251
Publication Date(Web):August 19, 2016
DOI:10.1021/jacs.6b06845
Human calprotectin (CP, S100A8/S100A9 oligomer, MRP-8/MRP-14 oligomer) is an abundant host-defense protein that is involved in the metal-withholding innate immune response. CP coordinates a variety of divalent first-row transition metal ions, which is implicated in its antimicrobial function, and its ability to sequester nutrient Zn(II) ions from microbial pathogens has been recognized for over two decades. CP has two distinct transition-metal-binding sites formed at the S100A8/S100A9 dimer interface, including a histidine-rich site composed of S100A8 residues His17 and His27 and S100A9 residues His91 and His95. In this study, we report that CP binds Zn(II) at this site using a hexahistidine motif, completed by His103 and His105 of the S100A9 C-terminal tail and previously identified as the high-affinity Mn(II) and Fe(II) coordination site. Zn(II) binding at this unique site shields the S100A9 C-terminal tail from proteolytic degradation by proteinase K. X-ray absorption spectroscopy and Zn(II) competition titrations support the formation of a Zn(II)-His6 motif. Microbial growth studies indicate that the hexahistidine motif is important for preventing microbial Zn(II) acquisition from CP by the probiotic Lactobacillus plantarum and the opportunistic human pathogen Candida albicans. The Zn(II)-His6 site of CP expands the known biological coordination chemistry of Zn(II) and provides new insight into how the human innate immune system starves microbes of essential metal nutrients.
Co-reporter:Jules R. Stephan and Elizabeth M. Nolan  
Chemical Science 2016 vol. 7(Issue 3) pp:1962-1975
Publication Date(Web):23 Nov 2015
DOI:10.1039/C5SC03287C
Calprotectin (CP, S100A8/S100A9 oligomer, MRP-8/14 oligomer, calgranulins A and B) is a protein component of the innate immune system that contributes to the metal-withholding response by sequestering bioavailable transition metal ions at sites of infection. Human CP employs Ca(II) ions to modulate its quaternary structure, transition metal binding properties, and antimicrobial activity. In this work, we report the discovery that Ca(II)-induced self-association of human CP to afford heterotetramers protects the protein scaffold from degradation by host serine proteases. We present the design and characterization of two new human CP-Ser variants, S100A8(C42S)(I60E)/S100A9(C3S) and S100A8(C42S)(I60K)/S100A9(C3S), that exhibit defective tetramerization properties. Analytical size exclusion chromatography and analytical ultracentrifugation reveal that both variants, hereafter I60E and I60K, persist as heterodimers in the presence of Ca(II) only, and form heterotetramers in the presence of Mn(II) only and both Ca(II) and Mn(II). Coordination to Fe(II) also causes I60E and I60K to form heterotetramers in both the absence and presence of Ca(II). The Ca(II)-bound I60E and I60K heterodimers are readily degraded by trypsin, chymotrypsin, and human neutrophil elastase, whereas the Ca(II)-bound CP-Ser heterotetramers and the Ca(II)- and Mn(II)-bound I60E and I60K heterotetramers are resistant to degradation by these host proteases. The staphylococcal extracellular protease GluC cuts the S100A8 subunit of CP-Ser at the C-terminal end of residue 89 to afford a ΔSHKE variant. The GluC cleavage site is in close proximity to the His3Asp metal-binding site, which coordinates Zn(II) with high affinity, and Zn(II) chelation protects the S100A8 subunit from GluC cleavage. Taken together, these results provide new insight into how Ca(II) ions and transition metals modulate the chemistry and biology of CP, and indicate that coordination to divalent cations transforms human CP into a protease-resistant form and enables innate immune function in the hostile conditions of an infection site.
Co-reporter:Phoom Chairatana, Hiutung Chu, Patricia A. Castillo, Bo Shen, Charles L. Bevins and Elizabeth M. Nolan  
Chemical Science 2016 vol. 7(Issue 3) pp:1738-1752
Publication Date(Web):10 Dec 2015
DOI:10.1039/C5SC04194E
Human α-defensin 6 (HD6) is a unique peptide of the defensin family that provides innate immunity in the intestine by self-assembling to form higher-order oligomers that entrap bacteria and prevent host cell invasion. Here, we report critical steps in the self-assembly pathway of HD6. We demonstrate that HD6 is localized in secretory granules of small intestinal Paneth cells. HD6 is stored in these granules as an 81-residue propeptide (proHD6), and is recovered from ileal lumen as a 32-residue mature peptide. The propeptide neither forms higher-order oligomers, nor agglutinates bacteria, nor prevents Listeria monocytogenes invasion into epithelial cells. The Paneth cell granules also contain the protease trypsin, and trypsin-catalyzed hydrolysis of proHD6 liberates mature HD6, unmasking its latent activities. This work illustrates a remarkable example of how nature utilizes a propeptide strategy to spatially and temporally control peptide self-assembly, and thereby initiates innate immune function in the human intestine.
Co-reporter:Lisa S. Cunden, Aleth Gaillard and Elizabeth M. Nolan  
Chemical Science 2016 vol. 7(Issue 2) pp:1338-1348
Publication Date(Web):26 Oct 2015
DOI:10.1039/C5SC03655K
Human S100A12 is a host-defense protein expressed and released by neutrophils that contributes to innate immunity. Apo S100A12 is a 21 kDa antiparallel homodimer that harbors two Ca(II)-binding EF-hand domains per subunit and exhibits two His3Asp motifs for chelating transition metal ions at the homodimer interface. In this work, we present results from metal-binding studies and microbiology assays designed to ascertain whether Ca(II) ions modulate the Zn(II)-binding properties of S100A12 and further evaluate the antimicrobial properties of this protein. Our metal-depletion studies reveal that Ca(II) ions enhance the ability of S100A12 to sequester Zn(II) from microbial growth media. We report that human S100A12 has antifungal activity against Candida albicans, C. krusei, C. glabrata and C. tropicalis, all of which cause human disease. This antifungal activity is Ca(II)-dependent and requires the His3Asp metal-binding sites. We expand upon prior studies of the antibacterial activity of S100A12 and report Ca(II)-dependent and strain-selective behavior. S100A12 exhibits in vitro growth inhibitory activity against Listeria monocytogenes. In contrast, S100A12 has negligible effect on the growth of Escherichia coli K-12 and Pseudomonas aeruginosa PAO1. Loss of functional ZnuABC, a high-affinity Zn(II) import system, increases the susceptibility of E. coli and P. aeruginosa to S100A12, indicating that S100A12 deprives these mutant strains of Zn(II). To evaluate the Zn(II)-binding sites of S100A12 in solution, we present studies using Co(II) as a spectroscopic probe and chromophoric small-molecule chelators in Zn(II) competition titrations. We confirm that S100A12 binds Zn(II) with a 2:1 stoichiometry, and our data indicate sub-nanomolar affinity binding. Taken together, these data support a model whereby S100A12 uses Ca(II) ions to tune its Zn(II)-chelating properties and antimicrobial activity.
Co-reporter:Martina Sassone-Corsi;Phoom Chairatana;Tengfei Zheng;Araceli Perez-Lopez;Robert A. Edwards;Michael D. George;Manuela Raffatellu
PNAS 2016 Volume 113 (Issue 47 ) pp:13462-13467
Publication Date(Web):2016-11-22
DOI:10.1073/pnas.1606290113
Infections with Gram-negative pathogens pose a serious threat to public health. This scenario is exacerbated by increases in antibiotic resistance and the limited availability of vaccines and therapeutic tools to combat these infections. Here, we report an immunization approach that targets siderophores, which are small molecules exported by enteric Gram-negative pathogens to acquire iron, an essential nutrient, in the host. Because siderophores are nonimmunogenic, we designed and synthesized conjugates of a native siderophore and the immunogenic carrier protein cholera toxin subunit B (CTB). Mice immunized with the CTB–siderophore conjugate developed anti-siderophore antibodies in the gut mucosa, and when mice were infected with the enteric pathogen Salmonella, they exhibited reduced intestinal colonization and reduced systemic dissemination of the pathogen. Moreover, analysis of the gut microbiota revealed that reduction of Salmonella colonization in the inflamed gut was accompanied by expansion of Lactobacillus spp., which are beneficial commensal organisms that thrive in similar locales as Enterobacteriaceae. Collectively, our results demonstrate that anti-siderophore antibodies inhibit Salmonella colonization. Because siderophore-mediated iron acquisition is a virulence trait shared by many bacterial and fungal pathogens, blocking microbial iron acquisition by siderophore-based immunization or other siderophore-targeted approaches may represent a novel strategy to prevent and ameliorate a broad range of infections.
Co-reporter:Mohammed Shabab;Jon Penterman;Markus F. F. Arnold;Andrew J. Wommack;Hartmut T. Bocker;Paul A. Price;Joel S. Griffitts;Graham C. Walker
PNAS 2016 Volume 113 (Issue 36 ) pp:10157-10162
Publication Date(Web):2016-09-06
DOI:10.1073/pnas.1610724113
Interactions of rhizobia with legumes establish the chronic intracellular infection that underlies symbiosis. Within nodules of inverted repeat-lacking clade (IRLC) legumes, rhizobia differentiate into nitrogen-fixing bacteroids. This terminal differentiation is driven by host nodule-specific cysteine-rich (NCR) peptides that orchestrate the adaptation of free-living bacteria into intracellular residents. Medicago truncatula encodes a family of >700 NCR peptides that have conserved cysteine motifs. NCR247 is a cationic peptide with four cysteines that can form two intramolecular disulfide bonds in the oxidized forms. This peptide affects Sinorhizobium meliloti transcription, translation, and cell division at low concentrations and is antimicrobial at higher concentrations. By preparing the three possible disulfide–cross-linked NCR247 regioisomers, the reduced peptide, and a variant lacking cysteines, we performed a systematic study of the effects of intramolecular disulfide cross-linking and cysteines on the activities of an NCR peptide. The relative activities of the five NCR247 variants differed strikingly among the various bioassays, suggesting that the NCR peptide-based language used by plants to control the development of their bacterial partners during symbiosis is even greater than previously recognized. These patterns indicate that certain NCR bioactivities require cysteines whereas others do not. The results also suggest that NCR247 may exert some of its effects within the cell envelope whereas other activities occur in the cytoplasm. BacA, a membrane protein that is critical for symbiosis, provides protection against all bactericidal forms of NCR247. Oxidative folding protects NCR247 from degradation by the symbiotically relevant metalloprotease HrrP (host range restriction peptidase), suggesting that disulfide bond formation may additionally stabilize NCR peptides during symbiosis.
Co-reporter:Derek M. Gagnon; Megan Brunjes Brophy; Sarah E. J. Bowman; Troy A. Stich; Catherine L. Drennan; R. David Britt
Journal of the American Chemical Society 2015 Volume 137(Issue 8) pp:3004-3016
Publication Date(Web):January 18, 2015
DOI:10.1021/ja512204s
The antimicrobial protein calprotectin (CP), a hetero-oligomer of the S100 family members S100A8 and S100A9, is the only identified mammalian Mn(II)-sequestering protein. Human CP uses Ca(II) ions to tune its Mn(II) affinity at a biologically unprecedented hexahistidine site that forms at the S100A8/S100A9 interface, and the molecular basis for this phenomenon requires elucidation. Herein, we investigate the remarkable Mn(II) coordination chemistry of human CP using X-ray crystallography as well as continuous-wave (CW) and pulse electron paramagnetic resonance (EPR) spectroscopies. An X-ray crystallographic structure of Mn(II)-CP containing one Mn(II), two Ca(II), and two Na(I) ions per CP heterodimer is reported. The CW EPR spectrum of Ca(II)- and Mn(II)-bound CP prepared with a 10:0.9:1 Ca(II):Mn(II):CP ratio is characterized by an unusually low zero-field splitting of 485 MHz (E/D = 0.30) for the S = 5/2 Mn(II) ion, consistent with the high symmetry of the His6 binding site observed crystallographically. Results from electron spin–echo envelope modulation and electron–nuclear double resonance experiments reveal that the six Mn(II)-coordinating histidine residues of Ca(II)- and Mn(II)-bound CP are spectroscopically equivalent. The observed 15N (I = 1/2) hyperfine couplings (A) arise from two distinct classes of nitrogen atoms: the coordinating ε-nitrogen of the imidazole ring of each histidine ligand (A = [3.45, 3.71, 5.91] MHz) and the distal δ-nitrogen (A = [0.11, 0.18, 0.42] MHz). In the absence of Ca(II), the binding affinity of CP for Mn(II) drops by two to three orders of magnitude and coincides with Mn(II) binding at the His6 site as well as other sites. This study demonstrates the role of Ca(II) in enabling high-affinity and specific binding of Mn(II) to the His6 site of human calprotectin.
Co-reporter:Julie L. H. Madsen; Timothy C. Johnstone
Journal of the American Chemical Society 2015 Volume 137(Issue 28) pp:9117-9127
Publication Date(Web):June 1, 2015
DOI:10.1021/jacs.5b04557
Staphyloferrin B (SB) is a citrate-based polycarboxylate siderophore produced and utilized by the human pathogen Staphylococcus aureus for acquiring iron when colonizing the vertebrate host. The first chemical synthesis of SB is reported, which enables further molecular and biological characterization and provides access to structural analogues of the siderophore. Under conditions of iron limitation, addition of synthetic SB to bacterial growth medium recovered the growth of the antibiotic resistant community isolate S. aureus USA300 JE2. Two structural analogues of SB, epiSB and SBimide, were also synthesized and employed to investigate how epimerization of the citric acid moiety or imide formation influence its function as a siderophore. Epimerization of the citric acid stereocenter perturbed the iron-binding properties and siderophore function of SB as evidenced by experimental and computational modeling studies. Although epiSB provided growth recovery to S. aureus USA300 JE2 cultured in iron-deficient medium, the effect was attenuated relative to that of SB. Moreover, SB more effectively sequestered the Fe(III) bound to human holo-transferrin, an iron source of S. aureus, than epiSB. SBimide is an imide analogous to the imide forms of other citric acid siderophores that are often observed when these molecules are isolated from natural sources. Here, SBimide is shown to be unstable, converting to native SB at physiological pH. SB is considered to be a virulence factor of S. aureus, a pathogen that poses a particular threat to public health because of the number of drug-resistant strains emerging in hospital and community settings. Iron acquisition by S. aureus is important for its ability to colonize the human host and cause disease, and new chemical insights into the structure and function of SB will inform the search for new therapeutic strategies for combating S. aureus infections.
Co-reporter:Phoom Chairatana, Tengfei Zheng and Elizabeth M. Nolan  
Chemical Science 2015 vol. 6(Issue 8) pp:4458-4471
Publication Date(Web):22 May 2015
DOI:10.1039/C5SC00962F
New antibiotics are required to treat bacterial infections and counteract the emergence of antibiotic resistance. Pathogen-specific antibiotics have several advantages over broad-spectrum drugs, which include minimal perturbation to the commensal microbiota. We present a strategy for targeting antibiotics to bacterial pathogens that utilises the salmochelin-mediated iron uptake machinery of Gram-negative Escherichia coli. Salmochelins are C-glucosylated derivatives of the siderophore enterobactin. The biosynthesis and utilisation of salmochelins are important for virulence because these siderophores allow pathogens to acquire iron and evade the enterobactin-scavenging host-defense protein lipocalin-2. Inspired by the salmochelins, we report the design and chemoenzymatic preparation of glucosylated enterobactin–β-lactam conjugates that harbour the antibiotics ampicillin (Amp) and amoxicillin (Amx), hereafter GlcEnt–Amp/Amx. The GlcEnt scaffolds are based on mono- and diglucosylated Ent where one catechol moiety is functionalized at the C5 position for antibiotic attachment. We demonstrate that GlcEnt–Amp/Amx provide up to 1000-fold enhanced antimicrobial activity against uropathogenic E. coli relative to the parent β-lactams. Moreover, GlcEnt–Amp/Amx based on a diglucosylated Ent (DGE) platform selectively kill uropathogenic E. coli that express the salmochelin receptor IroN in the presence of non-pathogenic E. coli and other bacterial strains that include the commensal microbe Lactobacillus rhamnosus GG. Moreover, GlcEnt–Amp/Amx evade the host-defense protein lipocalin-2, and exhibit low toxicity to mammalian cells. Our work establishes that siderophore–antibiotic conjugates provide a strategy for targeting virulence, narrowing the activity spectrum of antibiotics in clinical use, and achieving selective delivery of antibacterial cargos to pathogenic bacteria on the basis of siderophore receptor expression.
Co-reporter:Megan Brunjes Brophy and Elizabeth M. Nolan
ACS Chemical Biology 2015 Volume 10(Issue 3) pp:641
Publication Date(Web):January 16, 2015
DOI:10.1021/cb500792b
Bacterial and fungal pathogens cause a variety of infectious diseases and constitute a significant threat to public health. The human innate immune system represents the first line of defense against pathogenic microbes and employs a range of chemical artillery to combat these invaders. One important mechanism of innate immunity is the sequestration of metal ions that are essential nutrients. Manganese is one nutrient that is required for many pathogens to establish an infective lifestyle. This review summarizes recent advances in the role of manganese in the host–pathogen interaction and highlights Mn(II) sequestration by neutrophil calprotectin as well as how bacterial acquisition and utilization of manganese enables pathogenesis.
Co-reporter:Timothy C. Johnstone and Elizabeth M. Nolan  
Dalton Transactions 2015 vol. 44(Issue 14) pp:6320-6339
Publication Date(Web):18 Feb 2015
DOI:10.1039/C4DT03559C
Bacteria secrete small molecules known as siderophores to acquire iron from their surroundings. For over 60 years, investigations into the bioinorganic chemistry of these molecules, including fundamental coordination chemistry studies, have provided insight into the crucial role that siderophores play in bacterial iron homeostasis. The importance of understanding the fundamental chemistry underlying bacterial life has been highlighted evermore in recent years because of the emergence of antibiotic-resistant bacteria and the need to prevent the global rise of these superbugs. Increasing reports of siderophores functioning in capacities other than iron transport have appeared recently, but reports of “non-classical” siderophore functions have long paralleled those of iron transport. One particular non-classical function of these iron chelators, namely antibiotic activity, was documented before the role of siderophores in iron transport was established. In this Perspective, we present an exposition of past and current work into non-classical functions of siderophores and highlight the directions in which we anticipate that this research is headed. Examples include the ability of siderophores to function as zincophores, chalkophores, and metallophores for a variety of other metals, sequester heavy metal toxins, transport boron, act as signalling molecules, regulate oxidative stress, and provide antibacterial activity.
Co-reporter:Haritha R. Chileveru, Shion A. Lim, Phoom Chairatana, Andrew J. Wommack, I-Ling Chiang, and Elizabeth M. Nolan
Biochemistry 2015 Volume 54(Issue 9) pp:1767-1777
Publication Date(Web):February 9, 2015
DOI:10.1021/bi501483q
Human α-defensin 5 (HD5) is a 32-residue cysteine-rich host-defense peptide that exhibits broad-spectrum antimicrobial activity and contributes to innate immunity in the human gut and other organ systems. Despite many years of investigation, its antimicrobial mechanism of action remains unclear. In this work, we report that HD5ox, the oxidized form of this peptide that exhibits three regiospecific disulfide bonds, causes distinct morphological changes to Escherichia coli and other Gram-negative microbes. These morphologies include bleb formation, cellular elongation, and clumping. The blebs are up to ∼1 μm wide and typically form at the site of cell division or cell poles. Studies with E. coli expressing cytoplasmic GFP reveal that HD5ox treatment causes GFP emission to localize in the bleb. To probe the cellular uptake of HD5ox and subsequent localization, we describe the design and characterization of a fluorophore–HD5 conjugate family. By employing these peptides, we demonstrate that fluorophore–HD5ox conjugates harboring the rhodamine and coumarin fluorophores enter the E. coli cytoplasm. On the basis of the fluorescence profiles, each of these fluorophore–HD5ox conjugates localizes to the site of cell division and cell poles. These studies support the notion that HD5ox, at least in part, exerts its antibacterial activity against E. coli and other Gram-negative microbes in the cytoplasm.
Co-reporter:Tengfei Zheng
Journal of the American Chemical Society 2014 Volume 136(Issue 27) pp:9677-9691
Publication Date(Web):June 13, 2014
DOI:10.1021/ja503911p
The design, synthesis, and characterization of enterobactin–antibiotic conjugates, hereafter Ent-Amp/Amx, where the β-lactam antibiotics ampicillin (Amp) and amoxicillin (Amx) are linked to a monofunctionalized enterobactin scaffold via a stable poly(ethylene glycol) linker are reported. Under conditions of iron limitation, these siderophore-modified antibiotics provide enhanced antibacterial activity against Escherichia coli strains, including uropathogenic E. coli CFT073 and UTI89, enterohemorrhagic E. coli O157:H7, and enterotoxigenic E. coli O78:H11, compared to the parent β-lactams. Studies with E. coli K-12 derivatives defective in ferric enterobactin transport reveal that the enhanced antibacterial activity observed for this strain requires the outer membrane ferric enterobactin transporter FepA. A remarkable 1000-fold decrease in minimum inhibitory concentration (MIC) value is observed for uropathogenic E. coli CFT073 relative to Amp/Amx, and time-kill kinetic studies demonstrate that Ent-Amp/Amx kill this strain more rapidly at 10-fold lower concentrations than the parent antibiotics. Moreover, Ent-Amp and Ent-Amx selectively kill E. coli CFT073 co-cultured with other bacterial species such as Staphylococcus aureus, and Ent-Amp exhibits low cytotoxicity against human T84 intestinal cells in both the apo and iron-bound forms. These studies demonstrate that the native enterobactin platform provides a means to effectively deliver antibacterial cargo across the outer membrane permeability barrier of Gram-negative pathogens utilizing enterobactin for iron acquisition.
Co-reporter:Phoom Chairatana
Journal of the American Chemical Society 2014 Volume 136(Issue 38) pp:13267-13276
Publication Date(Web):August 26, 2014
DOI:10.1021/ja5057906
Human α-defensin 6 (HD6) is a 32-aa cysteine-rich peptide of the innate immune system. Although HD6 is a member of an antimicrobial peptide family, it exhibits negligible antibacterial activity in vitro. Rather, HD6 possesses a unique innate immune mechanism whereby it self-assembles into oligomers that capture pathogens to prevent microbial invasion of the intestinal epithelium and subsequent dissemination. Molecular-level understanding for why HD6 functions differently from other human defensins remains unclear. To further elucidate the HD6 self-assembly process and its biological activity, we developed robust protocols for obtaining native and mutant HD6 in high purity from overexpression in Escherichia coli. We combined biophysical characterization with biological assays to probe HD6 structure and function. We report that native HD6 readily self-assembles into elongated fibrils observable by transmission electron microscopy, agglutinates both Gram-negative and -positive bacteria, and prevents the human gastrointestinal pathogen Listeria monocytogenes from invading cultured mammalian cells. Mutation of hydrophobic residues (F2A, I22T, V25T, F29A) perturbs self-assembly and results in attenuated biological activity. In particular, the F2A and F29A mutants do not form fibrils under our experimental conditions and neither agglutinate bacteria nor prevent L. monocytogenes invasion. In total, our results demonstrate that the hydrophobic effect is essential for promoting HD6 self-assembly and innate immune function, and indicate that HD6 may provide host defense against Listeria in the gut. This investigation provides a timely description of how variations in amino acid sequence confer diverse physiological functions to members of the defensin family.
Co-reporter:Andrew J. Wommack ; Joshua J. Ziarek ; Jill Tomaras ; Haritha R. Chileveru ; Yunfei Zhang ; Gerhard Wagner
Journal of the American Chemical Society 2014 Volume 136(Issue 39) pp:13494-13497
Publication Date(Web):September 2, 2014
DOI:10.1021/ja505957w
We report the discovery of HD5-CD, an unprecedented C2-symmetric β-barrel-like covalent dimer of the cysteine-rich host-defense peptide human defensin 5 (HD5). Dimerization results from intermonomer disulfide exchange between the canonical α-defensin CysII–CysIV (Cys5–Cys20) bonds located at the hydrophobic interface. This disulfide-locked dimeric assembly provides a new element of structural diversity for cysteine-rich peptides as well as increased protease resistance, broad-spectrum antimicrobial activity, and enhanced potency against the opportunistic human pathogen Acinetobacter baumannii.
Co-reporter:Dr. Simone Moser;Haritha R. Chileveru;Jill Tomaras ; Elizabeth M. Nolan
ChemBioChem 2014 Volume 15( Issue 18) pp:2684-2688
Publication Date(Web):
DOI:10.1002/cbic.201402354
Co-reporter:Megan Brunjes Brophy ; Toshiki G. Nakashige ; Aleth Gaillard
Journal of the American Chemical Society 2013 Volume 135(Issue 47) pp:17804-17817
Publication Date(Web):November 18, 2013
DOI:10.1021/ja407147d
Human calprotectin (CP) is an antimicrobial protein that coordinates Mn(II) with high affinity in a Ca(II)-dependent manner at an unusual histidine-rich site (site 2) formed at the S100A8/S100A9 dimer interface. We present a 16-member CP mutant family where mutations in the S100A9 C-terminal tail (residues 96–114) are employed to evaluate the contributions of this region, which houses three histidines and four acidic residues, to Mn(II) coordination at site 2. The results from analytical size-exclusion chromatography, Mn(II) competition titrations, and electron paramagnetic resonance spectroscopy establish that the C-terminal tail is essential for high-affinity Mn(II) coordination by CP in solution. The studies indicate that His103 and His105 (HXH motif) of the tail complete the Mn(II) coordination sphere in solution, affording an unprecedented biological His6 site. These solution studies are in agreement with a Mn(II)-CP crystal structure reported recently (Damo, S. M.; et al. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 3841). Remarkably high-affinity Mn(II) binding is retained when either H103 or H105 are mutated to Ala, when the HXH motif is shifted from positions 103–105 to 104–106, and when the human tail is substituted by the C-terminal tail of murine S100A9. Nevertheless, antibacterial activity assays employing human CP mutants reveal that the native disposition of His residues is important for conferring growth inhibition against Escherichia coli and Staphylococcus aureus. Within the S100 family, the S100A8/S100A9 heterooligomer is essential for providing high-affinity Mn(II) binding; the S100A7, S100A9(C3S), S100A12, and S100B homodimers do not exhibit such Mn(II)-binding capacity.
Co-reporter:Yunfei Zhang, Fabien B. L. Cougnon, Yoshitha A. Wanniarachchi, Joshua A. Hayden, and Elizabeth M. Nolan
ACS Chemical Biology 2013 Volume 8(Issue 9) pp:1907
Publication Date(Web):July 10, 2013
DOI:10.1021/cb400340k
Human defensin 5 (HD5) is a 32-residue cysteine-rich host-defense peptide that exhibits three disulfide bonds in the oxidized form (HD5ox). It is abundant in small intestinal Paneth cells, which release HD5 into the intestinal lumen and house a labile Zn(II) store of unknown function. Here, we consider the redox properties of HD5 and report that the reduced form, HD5red, is a metal-ion chelator. HD5 has a midpoint potential of −257 mV at pH 7.0. HD5red utilizes its cysteine residues to coordinate one equivalent of Zn(II) with an apparent Kd1 value in the midpicomolar range. Zn(II) or Cd(II) binding perturbs the oxidative folding pathway of HD5red to HD5ox. Whereas HD5red is highly susceptible to proteolytic degradation, the Zn(II)-bound form displays resistance to hydrolytic breakdown by trypsin and other proteases. The ability of a reduced defensin peptide to coordinate Zn(II) provides a putative mechanism for how these peptides persist in vivo.
Co-reporter:Joshua A. Hayden ; Megan Brunjes Brophy ; Lisa S. Cunden
Journal of the American Chemical Society 2012 Volume 135(Issue 2) pp:775-787
Publication Date(Web):December 31, 2012
DOI:10.1021/ja3096416
Calprotectin (CP) is a transition metal-chelating antimicrobial protein of the calcium-binding S100 family that is produced and released by neutrophils. It inhibits the growth of various pathogenic microorganisms by sequestering the transition metal ions manganese and zinc. In this work, we investigate the manganese-binding properties of CP. We demonstrate that the unusual His4 motif (site 2) formed at the S100A8/S100A9 dimer interface is the site of high-affinity Mn(II) coordination. We identify a low-temperature Mn(II) spectroscopic signal for this site consistent with an octahedral Mn(II) coordination sphere with simulated zero-field splitting parameters D = 270 MHz and E/D = 0.30 (E = 81 MHz). This analysis, combined with studies of mutant proteins, suggests that four histidine residues (H17 and H27 of S100A8; H91 and H95 of S100A9) coordinate Mn(II) in addition to two as-yet unidentified ligands. The His3Asp motif (site 1), which is also formed at the S100A8/S100A9 dimer interface, does not provide a high-affinity Mn(II) binding site. Calcium binding to the EF-hand domains of CP increases the Mn(II) affinity of the His4 site from the low-micromolar to the mid-nanomolar range. Metal-ion selectivity studies demonstrate that CP prefers to coordinate Zn(II) over Mn(II). Nevertheless, the specificity of Mn(II) for the His4 site provides CP with the propensity to form mixed Zn:Mn:CP complexes where one Zn(II) ion occupies site 1 and one Mn(II) ion occupies site 2. These studies support the notion that CP responds to physiological calcium ion gradients to become a high-affinity transition metal ion chelator in the extracellular space where it inhibits microbial growth.
Co-reporter:Tengfei Zheng ; Justin L. Bullock
Journal of the American Chemical Society 2012 Volume 134(Issue 44) pp:18388-18400
Publication Date(Web):October 25, 2012
DOI:10.1021/ja3077268
The design and syntheses of monofunctionalized enterobactin (Ent, l- and d-isomers) scaffolds where one catecholate moiety of enterobactin houses an alkene, aldehyde, or carboxylic acid at the C5 position are described. These molecules are key precursors to a family of 10 enterobactin–cargo conjugates presented in this work, which were designed to probe the extent to which the Gram-negative ferric enterobactin uptake and processing machinery recognizes, transports, and utilizes derivatized enterobactin scaffolds. A series of growth recovery assays employing enterobactin-deficient E. coli ATCC 33475 (ent-) revealed that six conjugates based on l-Ent having relatively small cargos promoted E. coli growth under iron-limiting conditions whereas negligible-to-no growth recovery was observed for four conjugates with relatively large cargos. No growth recovery was observed for the enterobactin receptor-deficient strain of E. coli H1187 (fepA-) or the enterobactin esterase-deficient derivative of E. coli K-12 JW0576 (fes-), or when the d-isomer of enterobactin was employed. These results demonstrate that the E. coli ferric enterobactin transport machinery identifies and delivers select cargo-modified scaffolds to the E. coli cytoplasm. Pseudomonas aeruginosa PAO1 K648 (pvd-, pch-) exhibited greater promiscuity than that of E. coli for the uptake and utilization of the enterobactin–cargo conjugates, and growth promotion was observed for eight conjugates under iron-limiting conditions. Enterobactin may be utilized for delivering molecular cargos via its transport machinery to the cytoplasm of E. coli and P. aeruginosa thereby providing a means to overcome the Gram-negative outer membrane permeability barrier.
Co-reporter:Megan Brunjes Brophy ; Joshua A. Hayden
Journal of the American Chemical Society 2012 Volume 134(Issue 43) pp:18089-18100
Publication Date(Web):October 19, 2012
DOI:10.1021/ja307974e
Calprotectin (CP) is an antimicrobial protein produced and released by neutrophils that inhibits the growth of pathogenic microorganisms by sequestering essential metal nutrients in the extracellular space. In this work, spectroscopic and thermodynamic metal-binding studies are presented to delineate the zinc-binding properties of CP. Unique optical absorption and EPR spectroscopic signatures for the interfacial His3Asp and His4 sites of human calprotectin are identified by using Co(II) as a spectroscopic probe. Zinc competition titrations employing chromophoric Zn(II) indicators provide a 2:1 Zn(II):CP stoichiometry, confirm that the His3Asp and His4 sites of CP coordinate Zn(II), and reveal that the Zn(II) affinity of both sites is calcium-dependent. The calcium-insensitive Zn(II) competitor ZP4 affords dissociation constants of Kd1 = 133 ± 58 pM and Kd2 = 185 ± 219 nM for CP in the absence of Ca(II). These values decrease to Kd1 ≤ 10 pM and Kd2 ≤ 240 pM in the presence of excess Ca(II). The Kd1 and Kd2 values are assigned to the His3Asp and His4 sites, respectively. In vitro antibacterial activity assays indicate that the metal-binding sites and Ca(II)-replete conditions are required for CP to inhibit the growth of both Gram-negative and -positive bacteria. Taken together, these data provide a working model whereby calprotectin responds to physiological Ca(II) gradients to become a potent Zn(II) chelator in the extracellular space.
Co-reporter:Tengfei Zheng and Elizabeth M. Nolan  
Metallomics 2012 vol. 4(Issue 9) pp:866-880
Publication Date(Web):01 Aug 2012
DOI:10.1039/C2MT20082A
Siderophores are low-molecular-weight iron chelators that are produced and exported by bacteria, fungi and plants during periods of nutrient deprivation. The structures, biosynthetic logic, and coordination chemistry of these molecules have fascinated chemists for decades. Studies of such fundamental phenomena guide the use of siderophores and siderophore conjugates in a variety of medicinal applications that include iron-chelation therapies and drug delivery. Sensing applications constitute another important facet of siderophore-based technologies. The high affinities of siderophores for both ferric ions and siderophore receptors, proteins expressed on the cell surface that are required for ferric siderophore import, indicate that these small molecules may be employed for the selective capture of metal ions, proteins, and live bacteria. This minireview summaries progress in methods that utilize native bacterial and fungal siderophore scaffolds for the detection of Fe(III) or microbial pathogens.
Co-reporter:Andrew J. Wommack, Scott A. Robson, Yoshitha A. Wanniarachchi, Andrea Wan, Christopher J. Turner, Gerhard Wagner, and Elizabeth M. Nolan
Biochemistry 2012 Volume 51(Issue 48) pp:
Publication Date(Web):November 19, 2012
DOI:10.1021/bi301255u
Human defensin 5 (HD5) is a 32-residue host-defense peptide expressed in the gastrointestinal, reproductive, and urinary tracts that has antimicrobial activity. It exhibits six cysteine residues that are regiospecifically oxidized to form three disulfide bonds (Cys3–Cys31, Cys5–Cys20, and Cys10–Cys30) in the oxidized form (HD5ox). To probe the solution structure and oligomerization properties of HD5ox, and select mutant peptides lacking one or more disulfide bonds, NMR solution studies and analytical ultracentrifugation experiments are reported in addition to in vitro peptide stability assays. The NMR solution structure of HD5ox, solved at pH 4.0 in 90:10 H2O/D2O, is presented (PDB: 2LXZ). Relaxation T1/T2 measurements and the rotational correlation time (τc) estimated from a 15N-TRACT experiment demonstrate that HD5ox is dimeric under these experimental conditions. Exchange broadening of the Hα signals in the NMR spectra suggests that residues 19–21 (Val19–Cys20–Glu21) contribute to the dimer interface in solution. Exchange broadening is also observed for residues 7–14 comprising the loop. Sedimentation velocity and equilibrium studies conducted in buffered aqueous solution reveal that the oligomerization state of HD5ox is pH-dependent. Sedimentation coefficients of ca. 1.8 S and a molecular weight of 14 363 Da were determined for HD5ox at pH 7.0, supporting a tetrameric form ([HD5ox] ≥ 30 μM). At pH 2.0, a sedimentation coefficient of ca. 1.0 S and a molecular weight of 7079 Da, corresponding to a HD5ox dimer, were obtained. Millimolar concentrations of NaCl, CaCl2, and MgCl2 have a negligible effect on the HD5ox sedimentation coefficients in buffered aqueous solution at neutral pH. Removal of a single disulfide bond results in a loss of peptide fold and quaternary structure. These biophysical investigations highlight the dynamic and environmentally sensitive behavior of HD5ox in solution, and provide important insights into HD5ox structure/activity relationships and the requirements for antimicrobial action.
Co-reporter:Yoshitha A. Wanniarachchi, Piotr Kaczmarek, Andrea Wan, and Elizabeth M. Nolan
Biochemistry 2011 Volume 50(Issue 37) pp:
Publication Date(Web):August 23, 2011
DOI:10.1021/bi201043j
Human α-defensin 5 (HD5, HD5ox to specify the oxidized and disulfide linked form) is a 32-residue cysteine-rich host-defense peptide, expressed and released by small intestinal Paneth cells, that exhibits antibacterial activity against a number of Gram-negative and -positive bacterial strains. To ascertain the contributions of its disulfide array to structure, antimicrobial activity, and proteolytic stability, a series of HD5 double mutant peptides where pairs of cysteine residues corresponding to native disulfide linkages (Cys3-Cys31, Cys5-Cys20, Cys10-Cys30) were mutated to Ser or Ala residues, overexpressed in E. coli, purified, and characterized. A hexa mutant peptide, HD5[Serhexa], where all six native Cys residues are replaced by Ser residues, was also evaluated. Removal of a single native S–S linkage influences oxidative folding and regioisomerization, antibacterial activity, Gram-negative bacterial membrane permeabilization, and proteolytic stability. Whereas the majority of the HD5 mutant peptides show low micromolar activity against Gram-negative E. coli ATCC 25922 in colony counting assays, the wild-type disulfide array is essential for low micromolar activity against Gram-positive S. aureus ATCC 25923. Removal of a single disulfide bond attenuates the activity observed for HD5ox against this Gram-positive bacterial strain. This observation supports the notion that the HD5ox mechanism of antibacterial action differs for Gram-negative and Gram-positive species [Wei et al. (2009) J. Biol. Chem.284, 29180−29192] and that the native disulfide array is a requirement for its activity against S. aureus.
Co-reporter:Wilma Neumann, Anmol Gulati, Elizabeth M Nolan
Current Opinion in Chemical Biology (April 2017) Volume 37() pp:10-18
Publication Date(Web):April 2017
DOI:10.1016/j.cbpa.2016.09.012
Co-reporter:Tessa M. Baker, Toshiki G. Nakashige, Elizabeth M. Nolan and Michael L. Neidig
Chemical Science (2010-Present) 2017 - vol. 8(Issue 2) pp:NaN1377-1377
Publication Date(Web):2016/10/11
DOI:10.1039/C6SC03487J
Calprotectin (CP) is an abundant metal-chelating protein involved in host defense, and the ability of human CP to bind Fe(II) in a calcium-dependent manner was recently discovered. In the present study, near-infrared magnetic circular dichroism spectroscopy is employed to investigate the nature of Fe(II) coordination at the two transition-metal-binding sites of CP that are a His3Asp motif (site 1) and a His6 motif (site 2). Upon the addition of sub-stoichiometric Fe(II), a six-coordinate (6C) Fe(II) center associated with site 2 is preferentially formed in the presence of excess Ca(II). This site exhibits an exceptionally large ligand field (10Dq = 11045 cm−1) for a non-heme Fe(II) protein. Analysis of CP variants lacking residues of the His6 motif supports that CP coordinates Fe(II) at site 2 by employing six His ligands. In the presence of greater than one equiv. of Fe(II) or upon mutation of the His6 motif, the metal ion also binds at site 1 of CP to form a five-coordinate (5C) Fe(II)–His3Asp motif that was previously unidentified in this system. Notably, the introduction of His-to-Ala mutations at the His6 motif results in a mixture of 6C (site 2) and 5C (site 1) signals in the presence of sub-stoichiometric Fe(II). These results are consistent with a reduced Fe(II)-binding affinity of site 2 as more weakly coordinating water-derived ligands complete the 6C site. In the absence of Ca(II), both sites 1 and 2 are occupied upon addition of sub-stoichiometric Fe(II), and a stronger ligand field is observed for the 5C site. These spectroscopic studies provide further evaluation of a unique non-heme Fe(II)–His6 site for metalloproteins and support the notion that Ca(II) ions influence the Fe(II)-binding properties of CP.
Co-reporter:Phoom Chairatana, Hiutung Chu, Patricia A. Castillo, Bo Shen, Charles L. Bevins and Elizabeth M. Nolan
Chemical Science (2010-Present) 2016 - vol. 7(Issue 3) pp:NaN1752-1752
Publication Date(Web):2015/12/10
DOI:10.1039/C5SC04194E
Human α-defensin 6 (HD6) is a unique peptide of the defensin family that provides innate immunity in the intestine by self-assembling to form higher-order oligomers that entrap bacteria and prevent host cell invasion. Here, we report critical steps in the self-assembly pathway of HD6. We demonstrate that HD6 is localized in secretory granules of small intestinal Paneth cells. HD6 is stored in these granules as an 81-residue propeptide (proHD6), and is recovered from ileal lumen as a 32-residue mature peptide. The propeptide neither forms higher-order oligomers, nor agglutinates bacteria, nor prevents Listeria monocytogenes invasion into epithelial cells. The Paneth cell granules also contain the protease trypsin, and trypsin-catalyzed hydrolysis of proHD6 liberates mature HD6, unmasking its latent activities. This work illustrates a remarkable example of how nature utilizes a propeptide strategy to spatially and temporally control peptide self-assembly, and thereby initiates innate immune function in the human intestine.
Co-reporter:Timothy C. Johnstone and Elizabeth M. Nolan
Dalton Transactions 2015 - vol. 44(Issue 14) pp:NaN6339-6339
Publication Date(Web):2015/02/18
DOI:10.1039/C4DT03559C
Bacteria secrete small molecules known as siderophores to acquire iron from their surroundings. For over 60 years, investigations into the bioinorganic chemistry of these molecules, including fundamental coordination chemistry studies, have provided insight into the crucial role that siderophores play in bacterial iron homeostasis. The importance of understanding the fundamental chemistry underlying bacterial life has been highlighted evermore in recent years because of the emergence of antibiotic-resistant bacteria and the need to prevent the global rise of these superbugs. Increasing reports of siderophores functioning in capacities other than iron transport have appeared recently, but reports of “non-classical” siderophore functions have long paralleled those of iron transport. One particular non-classical function of these iron chelators, namely antibiotic activity, was documented before the role of siderophores in iron transport was established. In this Perspective, we present an exposition of past and current work into non-classical functions of siderophores and highlight the directions in which we anticipate that this research is headed. Examples include the ability of siderophores to function as zincophores, chalkophores, and metallophores for a variety of other metals, sequester heavy metal toxins, transport boron, act as signalling molecules, regulate oxidative stress, and provide antibacterial activity.
Co-reporter:Jules R. Stephan and Elizabeth M. Nolan
Chemical Science (2010-Present) 2016 - vol. 7(Issue 3) pp:NaN1975-1975
Publication Date(Web):2015/11/23
DOI:10.1039/C5SC03287C
Calprotectin (CP, S100A8/S100A9 oligomer, MRP-8/14 oligomer, calgranulins A and B) is a protein component of the innate immune system that contributes to the metal-withholding response by sequestering bioavailable transition metal ions at sites of infection. Human CP employs Ca(II) ions to modulate its quaternary structure, transition metal binding properties, and antimicrobial activity. In this work, we report the discovery that Ca(II)-induced self-association of human CP to afford heterotetramers protects the protein scaffold from degradation by host serine proteases. We present the design and characterization of two new human CP-Ser variants, S100A8(C42S)(I60E)/S100A9(C3S) and S100A8(C42S)(I60K)/S100A9(C3S), that exhibit defective tetramerization properties. Analytical size exclusion chromatography and analytical ultracentrifugation reveal that both variants, hereafter I60E and I60K, persist as heterodimers in the presence of Ca(II) only, and form heterotetramers in the presence of Mn(II) only and both Ca(II) and Mn(II). Coordination to Fe(II) also causes I60E and I60K to form heterotetramers in both the absence and presence of Ca(II). The Ca(II)-bound I60E and I60K heterodimers are readily degraded by trypsin, chymotrypsin, and human neutrophil elastase, whereas the Ca(II)-bound CP-Ser heterotetramers and the Ca(II)- and Mn(II)-bound I60E and I60K heterotetramers are resistant to degradation by these host proteases. The staphylococcal extracellular protease GluC cuts the S100A8 subunit of CP-Ser at the C-terminal end of residue 89 to afford a ΔSHKE variant. The GluC cleavage site is in close proximity to the His3Asp metal-binding site, which coordinates Zn(II) with high affinity, and Zn(II) chelation protects the S100A8 subunit from GluC cleavage. Taken together, these results provide new insight into how Ca(II) ions and transition metals modulate the chemistry and biology of CP, and indicate that coordination to divalent cations transforms human CP into a protease-resistant form and enables innate immune function in the hostile conditions of an infection site.
Co-reporter:Lisa S. Cunden, Aleth Gaillard and Elizabeth M. Nolan
Chemical Science (2010-Present) 2016 - vol. 7(Issue 2) pp:
Publication Date(Web):
DOI:10.1039/C5SC03655K
Co-reporter:Phoom Chairatana, Tengfei Zheng and Elizabeth M. Nolan
Chemical Science (2010-Present) 2015 - vol. 6(Issue 8) pp:NaN4471-4471
Publication Date(Web):2015/05/22
DOI:10.1039/C5SC00962F
New antibiotics are required to treat bacterial infections and counteract the emergence of antibiotic resistance. Pathogen-specific antibiotics have several advantages over broad-spectrum drugs, which include minimal perturbation to the commensal microbiota. We present a strategy for targeting antibiotics to bacterial pathogens that utilises the salmochelin-mediated iron uptake machinery of Gram-negative Escherichia coli. Salmochelins are C-glucosylated derivatives of the siderophore enterobactin. The biosynthesis and utilisation of salmochelins are important for virulence because these siderophores allow pathogens to acquire iron and evade the enterobactin-scavenging host-defense protein lipocalin-2. Inspired by the salmochelins, we report the design and chemoenzymatic preparation of glucosylated enterobactin–β-lactam conjugates that harbour the antibiotics ampicillin (Amp) and amoxicillin (Amx), hereafter GlcEnt–Amp/Amx. The GlcEnt scaffolds are based on mono- and diglucosylated Ent where one catechol moiety is functionalized at the C5 position for antibiotic attachment. We demonstrate that GlcEnt–Amp/Amx provide up to 1000-fold enhanced antimicrobial activity against uropathogenic E. coli relative to the parent β-lactams. Moreover, GlcEnt–Amp/Amx based on a diglucosylated Ent (DGE) platform selectively kill uropathogenic E. coli that express the salmochelin receptor IroN in the presence of non-pathogenic E. coli and other bacterial strains that include the commensal microbe Lactobacillus rhamnosus GG. Moreover, GlcEnt–Amp/Amx evade the host-defense protein lipocalin-2, and exhibit low toxicity to mammalian cells. Our work establishes that siderophore–antibiotic conjugates provide a strategy for targeting virulence, narrowing the activity spectrum of antibiotics in clinical use, and achieving selective delivery of antibacterial cargos to pathogenic bacteria on the basis of siderophore receptor expression.
staphyloferrin B
GLYCINE, N-METHYL-N-(TRIPHENYLMETHYL)-
proteinase K for tritirachium album
Chymotrypsin
Azetidine-2-carboxylic acid
trypsin