Theodore R. Holman

Find an error

Name:
Organization: University of California
Department: Department of Chemistry and Biochemistry
Title:
Co-reporter:Joshua D. Deschamps, Abiola F. Ogunsola, J. Brian Jameson II, Adam Yasgar, Becca A. Flitter, Cody J. Freedman, Jeffrey A. Melvin, Jason V. M. H. Nguyen, David J. Maloney, Ajit Jadhav, Anton Simeonov, Jennifer M. Bomberger, and Theodore R. Holman
Biochemistry 2016 Volume 55(Issue 23) pp:3329-3340
Publication Date(Web):May 26, 2016
DOI:10.1021/acs.biochem.6b00338
Pseudomonas aeruginosa is an opportunistic pathogen that can cause nosocomial and chronic infections in immunocompromised patients. P. aeruginosa secretes a lipoxygenase, LoxA, but the biological role of this enzyme is currently unknown. LoxA is poorly similar in sequence to both soybean LOX-1 (s15-LOX-1) and human 15-LOX-1 (37 and 39%, respectively) yet has kinetics comparably fast versus those of s15-LOX-1 (at pH 6.5, Kcat = 181 ± 6 s–1 and Kcat/KM = 16 ± 2 μM–1 s–1). LoxA is capable of efficiently catalyzing the peroxidation of a broad range of free fatty acid (FA) substrates (e.g., AA and LA) with high positional specificity, indicating a 15-LOX. Its mechanism includes hydrogen atom abstraction [a kinetic isotope effect (KIE) of >30], yet LoxA is a poor catalyst against phosphoester FAs, suggesting that LoxA is not involved in membrane decomposition. LoxA also does not react with 5- or 15-HETEs, indicating poor involvement in lipoxin production. A LOX high-throughput screen of the LOPAC library yielded a variety of low-micromolar inhibitors; however, none selectively targeted LoxA over the human LOX isozymes. With respect to cellular activity, the level of LoxA expression is increased when P. aeruginosa undergoes the transition to a biofilm mode of growth, but LoxA is not required for biofilm growth on abiotic surfaces. However, LoxA does appear to be required for biofilm growth in association with the host airway epithelium, suggesting a role for LoxA in mediating bacterium–host interactions during colonization.
Co-reporter:J. Brian Jameson II, Victor Kenyon, Theodore R. Holman
Analytical Biochemistry 2015 Volume 476() pp:45-50
Publication Date(Web):1 May 2015
DOI:10.1016/j.ab.2015.02.011

Abstract

Lipoxygenases (LOXs) regulate inflammation through the production of a variety of molecules whose specific downstream effects are not entirely understood due to the complexity of the inflammation pathway. The generation of these biomolecules can potentially be inhibited and/or allosterically regulated by small synthetic molecules. The current work describes the first mass spectrometric high-throughput method for identifying small molecule LOX inhibitors and LOX allosteric effectors that change the substrate preference of human lipoxygenase enzymes. Using a volatile buffer and an acid-labile detergent, enzymatic products can be directly detected using high-performance liquid chromatography–mass spectrometry (HPLC–MS) without the need for organic extraction. The method also reduces the required enzyme concentration compared with traditional ultraviolet (UV) absorbance methods by approximately 30-fold, allowing accurate binding affinity measurements for inhibitors with nanomolar affinity. The procedure was validated using known LOX inhibitors and the allosteric effector 13(S)-hydroxy-9Z,11E-octadecadienoic acid (13-HODE).

Co-reporter:Ganesha Rai ; Netra Joshi ; Joo Eun Jung ; Yu Liu ; Lena Schultz ; Adam Yasgar ; Steve Perry ; Giovanni Diaz ; Qiangli Zhang ; Victor Kenyon ; Ajit Jadhav ; Anton Simeonov ; Eng H. Lo ; Klaus van Leyen ; David J. Maloney
Journal of Medicinal Chemistry 2014 Volume 57(Issue 10) pp:4035-4048
Publication Date(Web):March 31, 2014
DOI:10.1021/jm401915r
A key challenge facing drug discovery today is variability of the drug target between species, such as with 12/15-lipoxygenase (12/15-LOX), which contributes to ischemic brain injury, but its human and rodent isozymes have different inhibitor specificities. In the current work, we have utilized a quantitative high-throughput (qHTS) screen to identify compound 1 (ML351), a novel chemotype for 12/15-LOX inhibition that has nanomolar potency (IC50 = 200 nM) against human 12/15-LOX and is protective against oxidative glutamate toxicity in mouse neuronal HT22 cells. In addition, it exhibited greater than 250-fold selectivity versus related LOX isozymes, was a mixed inhibitor, and did not reduce the active-site ferric ion. Lastly, 1 significantly reduced infarct size following permanent focal ischemia in a mouse model of ischemic stroke. As such, this represents the first report of a selective inhibitor of human 12/15-LOX with demonstrated in vivo activity in proof-of-concept mouse models of stroke.
Co-reporter:Christopher J. Smyrniotis, Shannon R. Barbour, Zexin Xia, Mark S. Hixon, and Theodore R. Holman
Biochemistry 2014 Volume 53(Issue 27) pp:4407-4419
Publication Date(Web):June 3, 2014
DOI:10.1021/bi401621d
5-Lipoxygenase (5-LOX) reacts with arachidonic acid (AA) to first generate 5(S)-hydroperoxy-6(E),8(Z),11(Z),14(Z)-eicosatetraenoic acid [5(S)-HpETE] and then an epoxide from 5(S)-HpETE to form leukotriene A4, from a single polyunsaturated fatty acid. This work investigates the kinetic mechanism of these two processes and the role of ATP in their activation. Specifically, it was determined that epoxidation of 5(S)-HpETE (dehydration of the hydroperoxide) has a rate of substrate capture (Vmax/Km) significantly lower than that of AA hydroperoxidation (oxidation of AA to form the hydroperoxide); however, hyperbolic kinetic parameters for ATP activation indicate a similar activation for AA and 5(S)-HpETE. Solvent isotope effect results for both hydroperoxidation and epoxidation indicate that a specific step in its molecular mechanism is changed, possibly because of a lowering of the dependence of the rate-limiting step on hydrogen atom abstraction and an increase in the dependency on hydrogen bond rearrangement. Therefore, changes in ATP concentration in the cell could affect the production of 5-LOX products, such as leukotrienes and lipoxins, and thus have wide implications for the regulation of cellular inflammation.
Co-reporter:Netra Joshi, Eric K. Hoobler, Steven Perry, Giovanni Diaz, Brian Fox, and Theodore R. Holman
Biochemistry 2013 Volume 52(Issue 45) pp:
Publication Date(Web):October 11, 2013
DOI:10.1021/bi4010649
Lipoxygenases, important enzymes in inflammation, can regulate their substrate specificity by allosteric interactions with their own hydroperoxide products. In this work, addition of both 13-(S)-hydroxy-(9Z,11E)-octadecadienoic acid [13-(S)-HODE] and 13-(S)-hydroperoxy-(6Z,9Z,11E)-octadecatrienoic acid to human epithelial 15-lipoxygenase-2 (15-LOX-2) increases the kcat/KM substrate specificity ratio of arachidonic acid (AA) and γ-linolenic acid (GLA) by 4-fold. 13-(S)-HODE achieves this change by activating kcat/KMAA but inhibiting kcat/KMGLA, which indicates that the allosteric structural changes at the active site discriminate between the length and unsaturation differences of AA and GLA to achieve opposite kinetic effects. The substrate specificity ratio is further increased, 11-fold in total, with an increase in pH, suggesting mechanistic differences between the pH and allosteric effects. Interestingly, the loss of the PLAT domain affects substrate specificity but does not eliminate the allosteric properties of 15-LOX-2, indicating that the allosteric site is located in the catalytic domain. However, the removal of the PLAT domain does change the magnitude of the allosteric effect. These data suggest that the PLAT domain moderates the communication pathway between the allosteric and catalytic sites, thus affecting substrate specificity. These results are discussed in the context of protein dimerization and other structural changes.
Co-reporter:Aaron T. Wecksler, Natalie K. Garcia, Theodore R. Holman
Bioorganic & Medicinal Chemistry 2009 Volume 17(Issue 18) pp:6534-6539
Publication Date(Web):15 September 2009
DOI:10.1016/j.bmc.2009.08.005
Recently, it has been shown that lipoxygenase (LO) products affect the substrate specificity of human 15-LO. In the current paper, we demonstrate that soybean LO-1 (sLO-1) is not affected by its own products, however, inhibitors which bind the allosteric site, oleyl sulfate (OS) and palmitoleyl sulfate (PS), not only lower catalytic activity, but also change the substrate specificity, by increasing the arachidonic acid (AA)/linoleic acid (LA) ratio to 4.8 and 4.0, respectively. The fact that LO inhibitors can lower activity and also change the LO product ratio is a new concept in lipoxygenase inhibition, where the goal is to not only reduce the catalytic activity but also alter substrate selectivity towards a physiologically beneficial product.
Co-reporter:Aaron T. Wecksler, Cyril Jacquot, Wilfred A. van der Donk and Theodore R. Holman
Biochemistry 2009 Volume 48(Issue 26) pp:
Publication Date(Web):May 26, 2009
DOI:10.1021/bi802332j
Human reticulocyte 15-lipoxygenase-1 (15-hLO-1) and human platelet 12-lipoxygenase (12-hLO) have been implicated in a number of diseases, with differences in their relative activity potentially playing a central role. In this work, we characterize the catalytic mechanism of these two enzymes with arachidonic acid (AA) as the substrate. Using variable-temperature kinetic isotope effects (KIE) and solvent isotope effects (SIE), we demonstrate that both kcat/KM and kcat for 15-hLO-1 and 12-hLO involve multiple rate-limiting steps that include a solvent-dependent step and hydrogen atom abstraction. A relatively low kcat/KM KIE of 8 was determined for 15-hLO-1, which increases to 18 upon the addition of the allosteric effector molecule, 12-hydroxyeicosatetraenoic acid (12-HETE), indicating a tunneling mechanism. Furthermore, the addition of 12-HETE lowers the observed kcat/KM SIE from 2.2 to 1.4, indicating that the rate-limiting contribution from a solvent sensitive step in the reaction mechanism of 15-hLO-1 has decreased, with a concomitant increase in the C−H bond abstraction contribution. Finally, the allosteric binding of 12-HETE to 15-hLO-1 decreases the KM[O2] for AA to 15 μM but increases the KM[O2] for linoleic acid (LA) to 22 μM, such that the kcat/KM[O2] values become similar for both substrates (∼0.3 s−1 μM−1). Considering that the oxygen concentration in cancerous tissue can be less than 5 μM, this result may have cellular implications with respect to the substrate specificity of 15-hLO-1.
Co-reporter:Aaron T. Wecksler, Victor Kenyon, Natalie K. Garcia, Joshua D. Deschamps, Wilfred A. van der Donk and Theodore R. Holman
Biochemistry 2009 Volume 48(Issue 36) pp:
Publication Date(Web):July 31, 2009
DOI:10.1021/bi9009242
Allosteric regulation of human lipoxygenase (hLO) activity has recently been implicated in the cellular biology of prostate cancer. In the current work, we present isotope effect, pH, and substrate inhibitor data of epithelial 15-hLO-2, which probe the allosteric effects on its mechanistic behavior. The Dkcat/KM for 15-hLO-2, with AA and LA as substrate, is large indicating hydrogen atom abstraction is the principle rate-determining step, involving a tunneling mechanism for both substrates. For AA, there are multiple rate determining steps (RDS) at both high and low temperatures, with both diffusion and hydrogen bonding rearrangements contributing at high temperature, but only hydrogen bonding rearrangements contributing at low temperature. The observed kinetic dependency on the hydrogen bonding rearrangement is eliminated upon addition of the allosteric effector, 13-(S)-hydroxyoctadecadienoic acid (13-HODE), and no allosteric effects were seen on diffusion or hydrogen atom abstraction. The (kcat/KM)AA/(kcat/KM)LA ratio was observed to have a pH dependence, which was fit with a titration curve (pKa = 7.7), suggesting the protonation of a histidine residue, which could hydrogen bond with the carboxylate of 13-HODE. Assuming this interaction, 13-HODE was docked to the solvent exposed histidines of a 15-hLO-2 homology model and found to bind well with H627, suggesting a potential location for the allosteric site. Utilizing d31-LA as an inhibitor, it was demonstrated that the binding of d31-LA to the allosteric site changes the conformation of 15-hLO-2 such that the affinity for substrate increases. This result suggests that allosteric binding locks the enzyme into a catalytically competent state, which facilitates binding of LA and decreases the (kcat/KM)AA/(kcat/KM)LA ratio. Finally, the magnitude of the 13-HODE KD for 15-hLO-2 is over 200-fold lower than that of 13-HODE for 15-hLO-1, changing the substrate specificity of 15-hLO-2 to 1.9. This would alter the LO product distribution and increase the production of the pro-tumorigenic, 13-HODE, possibly representing a pro-tumorigenic feedback loop for 13-HODE and 15-hLO-2.
Co-reporter:Aaron T. Wecksler, Victor Kenyon, Joshua D. Deschamps and Theodore R. Holman
Biochemistry 2008 Volume 47(Issue 28) pp:
Publication Date(Web):June 21, 2008
DOI:10.1021/bi800550n
Human reticulocyte 15-lipoxygenase (15-hLO-1) and epithelial 15-lipoxygenase (15-hLO-2) have been implicated in a number of human diseases, with differences in their substrate specificity potentially playing a central role. In this paper, we present a novel method for accurately measuring the substrate specificity of the two 15-hLO isozymes and demonstrate that both cholate and specific LO products affect substrate specificity. The linoleic acid (LA) product, 13-hydroperoxyoctadienoic acid (13-HPODE), changes the (kcat/Km)AA/(kcat/Km)LA ratio more than 5-fold for 15-hLO-1 and 3-fold for 15-hLO-2, while the arachidonic acid (AA) product, 12-(S)-hydroperoxyeicosatetraenoic acid (12-HPETE), affects only the ratio of 15-hLO-1 (more than 5-fold). In addition, the reduced products, 13-(S)-hydroxyoctadecadienoic acid (13-HODE) and 12-(S)-hydroxyeicosatetraenoic acid (12-HETE), also affect substrate specificity, indicating that iron oxidation is not responsible for the change in the (kcat/Km)AA/(kcat/Km)LA ratio. These results, coupled with the dependence of the 15-hLO-1 kcat/Km kinetic isotope effect (Dkcat/Km) on the presence of 12-HPETE and 12-HETE, indicate that the allosteric site, previously identified in 15-hLO-1 [Mogul, R., Johansen, E., and Holman, T. R. (1999) Biochemistry 39, 4801−4807], is responsible for the change in substrate specificity. The ability of LO products to regulate substrate specificity may be relevant with respect to cancer progression and warrants further investigation into the role of this product-feedback loop in the cell.
Co-reporter:Cyril Jacquot, Aaron T. Wecksler, Chris M. McGinley, Erika N. Segraves, Theodore R. Holman and Wilfred A. van der Donk
Biochemistry 2008 Volume 47(Issue 27) pp:
Publication Date(Web):June 12, 2008
DOI:10.1021/bi800308q
Lipoxygenases (LOs) catalyze lipid peroxidation and have been implicated in a number of human diseases connected to oxidative stress and inflammation. These enzymes have also attracted considerable attention due to large kinetic isotope effects (30−80) for the rate-limiting hydrogen abstraction step with linoleic acid (LA) as substrate. Herein, we report kinetic isotope effects (KIEs) in the reactions of three human LOs (platelet 12-hLO, reticulocyte 15-hLO-1, and epithelial 15-hLO-2) with arachidonic acid (AA). Surprisingly, the observed KIEs with AA were much smaller than the previously reported values with LA. Investigation into the origins for the smaller KIEs led to the discovery of isotope sensitive branching of the reaction pathways. Product distribution analysis demonstrated an inversion in the regioselectivity of 15-hLO-1, with hydrogen abstraction from C13 being the major pathway with unlabeled AA but abstraction from C10 predominating when the methylene group at position 13 was deuterated. Smaller but clear changes in regioselectivity were also observed for 12-hLO and 15-hLO-2.
Co-reporter:Yesseny Vasquez-Martinez, Rachana V. Ohri, Victor Kenyon, Theodore R. Holman, Silvia Sepúlveda-Boza
Bioorganic & Medicinal Chemistry 2007 Volume 15(Issue 23) pp:7408-7425
Publication Date(Web):1 December 2007
DOI:10.1016/j.bmc.2007.07.036
Human lipoxygenase (hLO) isozymes have been implicated in a number of disease states and have attracted much attention with respect to their inhibition. One class of inhibitors, the flavonoids, have been shown to be potent lipoxygenase inhibitors but their study has been restricted to those compounds found in nature, which have limited structural variability. We have therefore carried out a comprehensive study to determine the structural requirements for flavonoid potency and selectivity against platelet 12-hLO, reticulocyte 15-hLO-1, and prostate epithelial 15-hLO-2. We conclude from this study that catechols are essential for high potency, that isoflavones and isoflavanones tend to select against 12-hLO, that isoflavans tend to select against 15-hLO-1, but few flavonoids target 15-hLO-2.Possible docking modes to 15-hLO-1 for 4 potent, reductive flavonoid inhibitors.
5-(methylamino)-2-(naphthalen-1-yl)-1,3-oxazole-4-carbonitrile
2-Propenoic acid, 3-[2-(1-octynyl)phenyl]-, (2E)-
Phenol, 2-[5-(2-methylphenyl)-1H-pyrazol-3-yl]-
Phenol, 5-methyl-2-[5-(4-methylphenyl)-1H-pyrazol-3-yl]-
Phenol, 2-[5-(4-fluorophenyl)-1H-pyrazol-3-yl]-5-methyl-
Phenol, 2-[5-(2-chlorophenyl)-1H-pyrazol-3-yl]-4-methoxy-
Phenol, 2-[5-(3-fluorophenyl)-1H-pyrazol-3-yl]-4-methyl-
Phenol, 2-[5-(3-fluorophenyl)-1H-pyrazol-3-yl]-5-methyl-