Co-reporter:Naomi J. Farren, Noelia Ramírez, James D. Lee, Emanuela Finessi, Alastair C. Lewis, and Jacqueline F. Hamilton
Environmental Science & Technology 2015 Volume 49(Issue 16) pp:9648-9656
Publication Date(Web):July 24, 2015
DOI:10.1021/acs.est.5b01620
Organic nitrogen (ON) compounds are present in atmospheric particulate matter (PM), but compared to their inorganic, hydrocarbon, and oxygenated counterparts, they are difficult to characterize due to their low concentrations in complex matrices. Nitrosamines are a class of ON compounds known to be highly carcinogenic and include species formed from nicotine degradation, but there are no detailed estimates of their abundance in ambient air. We use a highly sensitive analytical method, which is capable of separating over 700 ON compounds, to determine daily variability in nicotine, and 8 nonspecific and 4 tobacco-specific nitrosamines in ambient PM from central London over two periods in winter and summer. The average total nitrosamine concentration was 5.2 ng m–3, substantially exceeding a current public recommendation of 0.3 ng m–3 on a daily basis. The lifetime cancer risk from nitrosamines in urban PM exceeded the U.S. Environmental Protection Agency guideline of 1 excess cancer case per 1 million population exposed after 1 h of exposure to observed concentrations per day over the duration of an adult lifetime. A clear relationship between ambient nitrosamines and total PM2.5 was observed with 1.9 ng m–3 ± 2.6 ng m–3 (total nitrosamine) per 10 μg m–3 PM2.5.
Co-reporter:Kelly L. Pereira, Jacqueline F. Hamilton, Andrew R. Rickard, William J. Bloss, Mohammed S. Alam, Marie Camredon, Martyn W. Ward, Kevin P. Wyche, Amalia Muñoz, Teresa Vera, Mónica Vázquez, Esther Borrás, and Milagros Ródenas
Environmental Science & Technology 2015 Volume 49(Issue 22) pp:13168
Publication Date(Web):October 16, 2015
DOI:10.1021/acs.est.5b03377
Secondary organic aerosol (SOA) is well-known to have adverse effects on air quality and human health. However, the dynamic mechanisms occurring during SOA formation and evolution are poorly understood. The time-resolved SOA composition formed during the photo-oxidation of three aromatic compounds, methyl chavicol, toluene and 4-methyl catechol, were investigated at the European Photoreactor. SOA was collected using a particle into liquid sampler and analyzed offline using state-of-the-art mass spectrometry to produce temporal profiles of individual photo-oxidation products. In the photo-oxidation of methyl chavicol, 70 individual compounds were characterized and three distinctive temporal profile shapes were observed. The calculated mass fraction (Ci,aer/COA) of the individual SOA compounds showed either a linear trend (increasing/decreasing) or exponential decay with time. Substituted nitrophenols showed an exponential decay, with the nitro-group on the aromatic ring found to control the formation and loss of these species in the aerosol phase. Nitrophenols from both methyl chavicol and toluene photo-oxidation experiments showed a strong relationship with the NO2/NO (ppbv/ppbv) ratio and were observed during initial SOA growth. The location of the nitrophenol aromatic substitutions was found to be critically important, with the nitrophenol in the photo-oxidation of 4-methyl catechol not partitioning into the aerosol phase until irradiation had stopped; highlighting the importance of studying SOA formation and evolution at a molecular level.
Co-reporter:Emanuela Finessi, Richard T. Lidster, Fiona Whiting, Thomas Elliott, M. Rami Alfarra, Gordon B. McFiggans, and Jacqueline F. Hamilton
Analytical Chemistry 2014 Volume 86(Issue 22) pp:11238
Publication Date(Web):October 10, 2014
DOI:10.1021/ac5028512
Secondary organic aerosol (SOA) is a key uncertainty in quantifying the impact of humans on Earth’s climate. SOA is a complex mixture of oxidized organic species, and a fundamental hurdle in determining its composition is the lack of authentic standards for comparison and quantification. Organic synthesis can be used to produce pure standards, but is limited to compounds for which there is a degree of confidence in the proposed structure and can be expensive and time-consuming. In this study, a flow reactor was developed to form SOA in sufficient quantities to be collected and pure compounds subsequently isolated from the mixture using semipreparative high performance liquid chromatography. The purity and yield of each isolated compound were obtained using proton nuclear magnetic resonance (1H NMR), whereas molecular formulas were confirmed by high resolution Fourier transform ion cyclotron mass spectrometry (FTICR-MS). The effectiveness of the methodology has been evaluated here by using α-pinene as the precursor because it is the monoterpene with the most well characterized SOA chemistry. Eleven individual α-pinene SOA compounds were produced from α-pinene oxidation experiments and used for quantitative analysis of SOA formed during chamber experiments carried out close to ambient conditions. These compounds represented 25% of the total SOA mass, a significant improvement in mass balance compared to previous studies. This relatively simple approach may be extended to produce other SOA components not available commercially to improve quantification of aerosol sources.
Co-reporter:Noelia Ramírez, Mustafa Z. Özel, Alastair C. Lewis, Rosa M. Marcé, Francesc Borrull, Jacqueline F. Hamilton
Environment International (October 2014) Volume 71() pp:139-147
Publication Date(Web):1 October 2014
DOI:10.1016/j.envint.2014.06.012
•We determine levels of tobacco carcinogens in smokers' and non-smokers' house dust.•We estimate the potential cancer risk through ingestion and dermal exposure.•Risk in toddlers exceeds the recommendations of the official agencies in most homes.•Results highlight the potential risk of this type of exposure to tobacco carcinogens.In addition to passive inhalation, non-smokers, and especially children, are exposed to residual tobacco smoke gases and particles that are deposited to surfaces and dust, known as thirdhand smoke (THS). However, until now the potential cancer risks of this pathway of exposure have been highly uncertain and not considered in public health policy. In this study, we estimate for the first time the potential cancer risk by age group through non-dietary ingestion and dermal exposure to carcinogen N-nitrosamines and tobacco-specific nitrosamines (TSNAs) measured in house dust samples. Using a highly sensitive and selective analytical approach we have determined the presence of nicotine, eight N-nitrosamines and five tobacco-specific nitrosamines in forty-six settled dust samples from homes occupied by both smokers and non-smokers. Using observations of house dust composition, we have estimated the cancer risk by applying the most recent official toxicological information. Calculated cancer risks through exposure to the observed levels of TSNAs at an early life stage (1 to 6 years old) exceeded the upper-bound risk recommended by the USEPA in 77% of smokers' and 64% of non-smokers' homes. The maximum risk from exposure to all nitrosamines measured in a smoker occupied home was one excess cancer case per one thousand population exposed.The results presented here highlight the potentially severe long-term consequences of THS exposure, particularly to children, and give strong evidence of its potential health risk and, therefore, they should be considered when developing future environmental and health policies.Download full-size image