Co-reporter:Ning Wang, Zheng Chen, Wei Wei, and Zhenhua Jiang
Journal of the American Chemical Society November 13, 2013 Volume 135(Issue 45) pp:17060-17068
Publication Date(Web):November 13, 2013
DOI:10.1021/ja409881g
Thanks to their many favorable advantages, polymer solar cells exhibit great potential for next-generation clean energy sources. Herein, we have successfully designed and synthesized a series of new fluorinated benzothiadiazole-based conjugated copolymers PBDTTEH-DTHBTff (P1), PBDTTEH-DTEHBTff (P2), and PBDTHDO-DTHBTff (P3). The power conversion efficiencies of 4.46, 6.20, and 8.30% were achieved for P1-, P2-, and P3-based devices within ∼100 nm thickness active layers under AM 1.5G illumination without any processing additives or post-treatments, respectively. The PCE of 8.30% for P3 is the highest value for the reported traditional single-junction polymer solar cells via a simple fabrication architecture without any additives or post-treatments. In addition, it is noteworthy that P3 also allows making high efficient polymer solar cells with high PCEs of 7.27 and 6.56% under the same condition for ∼200 and ∼300 nm thickness active layers, respectively. Excellent photoelectric properties and good solubility make polymer P3 become an alternative material for high-performance polymer solar cells.
Co-reporter:Ning Wang ; Zheng Chen ; Wei Wei ;Zhenhua Jiang
Journal of the American Chemical Society () pp:
Publication Date(Web):2017-2-22
DOI:10.1021/ja409881g
Thanks to their many favorable advantages, polymer solar cells exhibit great potential for next-generation clean energy sources. Herein, we have successfully designed and synthesized a series of new fluorinated benzothiadiazole-based conjugated copolymers PBDTTEH-DTHBTff (P1), PBDTTEH-DTEHBTff (P2), and PBDTHDO-DTHBTff (P3). The power conversion efficiencies of 4.46, 6.20, and 8.30% were achieved for P1-, P2-, and P3-based devices within ∼100 nm thickness active layers under AM 1.5G illumination without any processing additives or post-treatments, respectively. The PCE of 8.30% for P3 is the highest value for the reported traditional single-junction polymer solar cells via a simple fabrication architecture without any additives or post-treatments. In addition, it is noteworthy that P3 also allows making high efficient polymer solar cells with high PCEs of 7.27 and 6.56% under the same condition for ∼200 and ∼300 nm thickness active layers, respectively. Excellent photoelectric properties and good solubility make polymer P3 become an alternative material for high-performance polymer solar cells.