Co-reporter:Peggy E. Williams, Dustin R. Klein, Sylvester M. Greer, and Jennifer S. Brodbelt
Journal of the American Chemical Society November 8, 2017 Volume 139(Issue 44) pp:15681-15681
Publication Date(Web):October 8, 2017
DOI:10.1021/jacs.7b06416
Complete structural characterization of complex lipids, such as glycerophospholipids, by tandem mass spectrometry (MS/MS) continues to present a major challenge. Conventional activation methods do not generate fragmentation patterns that permit the simultaneous discernment of isomers which differ in both the positions of acyl chains on the glycerol backbone and the double bonds within the acyl chains. Herein we describe a hybrid collisional activation/UVPD workflow that yields near-complete structural information for glycerophospholipids. This hybrid MS3 strategy affords the lipid’s sum composition based on the accurate mass measured for the intact lipid as well as highly specific diagnostic product ions that reveal both the acyl chain assignment (i.e., sn-position) and the site-specific location of double bonds in the acyl chains. This approach is demonstrated to differentiate sn-positional and double-bond-positional isomers, such as the regioisomeric phosphatidylcholines PC 16:0/18:1(n-9) and PC 18:1(n-9)/16:0, and has been integrated into an LC-MS3 workflow.
Co-reporter:James D. Sanders, Sylvester M. Greer, and Jennifer S. Brodbelt
Analytical Chemistry November 7, 2017 Volume 89(Issue 21) pp:11772-11772
Publication Date(Web):October 16, 2017
DOI:10.1021/acs.analchem.7b03396
The most popular bottom-up proteomics workflow uses trypsin to enzymatically cleave proteins C-terminal to lysine and arginine residues prior to LCMS/MS analysis of the resulting peptides. The high frequency of these residues generates short peptides, some of which are too small or uninformative for optimal analysis and which potentially contribute to gaps in sequence coverage of proteins. Analysis of larger peptides, termed “middle-down”, has the potential to span greater sections of protein sequences if the larger peptides are adequately characterized based on their fragmentation patterns. We describe a strategy to generate larger peptides in conjunction with successful characterization by ultraviolet photodissociation (UVPD) for MS/MS analysis in a middle-down workflow, as demonstrated for proteins from E. coli lysates. The larger peptides are produced via modification of lysine residues by carbamylation of proteins. Carbamylation of proteins followed by tryptic digestion produced peptides similar to those expected from Arg-C proteolysis, yet with fewer missed and nonspecific cleavages. UVPD provides excellent sequence coverage of the larger peptides that are often less well characterized by traditional collision-based activation methods.
Co-reporter:Timothy P. Cleland, Caroline J. DeHart, Ryan T. Fellers, Alexandra J. VanNispen, Joseph B. Greer, Richard D. LeDuc, W. Ryan Parker, Paul M. Thomas, Neil L. Kelleher, and Jennifer S. Brodbelt
Journal of Proteome Research May 5, 2017 Volume 16(Issue 5) pp:2072-2072
Publication Date(Web):April 17, 2017
DOI:10.1021/acs.jproteome.7b00043
The analysis of intact proteins (top-down strategy) by mass spectrometry has great potential to elucidate proteoform variation, including patterns of post-translational modifications (PTMs), which may not be discernible by analysis of peptides alone (bottom-up approach). To maximize sequence coverage and localization of PTMs, various fragmentation modes have been developed to produce fragment ions from deep within intact proteins. Ultraviolet photodissociation (UVPD) has recently been shown to produce high sequence coverage and PTM retention on a variety of proteins, with increasing evidence of efficacy on a chromatographic time scale. However, utilization of UVPD for high-throughput top-down analysis to date has been limited by bioinformatics. Here we detected 153 proteins and 489 proteoforms using UVPD and 271 proteins and 982 proteoforms using higher energy collisional dissociation (HCD) in a comparative analysis of HeLa whole-cell lysate by qualitative top-down proteomics. Of the total detected proteoforms, 286 overlapped between the UVPD and HCD data sets, with 68% of proteoforms having C scores greater than 40 for UVPD and 63% for HCD. The average sequence coverage (28 ± 20% for UVPD versus 17 ± 8% for HCD, p < 0.0001) was found to be higher for UVPD than HCD and with a trend toward improvement in q value for the UVPD data set. This study demonstrates the complementarity of UVPD and HCD for more extensive protein profiling and proteoform characterization.Keywords: HeLa; higher-energy collisional dissociation; Orbitrap mass spectrometer; protein; proteoform; proteomics; top-down; ultraviolet photodissociation;
Co-reporter:Andrew P. Horton, Scott A. Robotham, Joe R. Cannon, Dustin D. Holden, Edward M. Marcotte, and Jennifer S. Brodbelt
Analytical Chemistry March 21, 2017 Volume 89(Issue 6) pp:3747-3747
Publication Date(Web):February 24, 2017
DOI:10.1021/acs.analchem.7b00130
We describe a strategy for de novo peptide sequencing based on matched pairs of tandem mass spectra (MS/MS) obtained by collision induced dissociation (CID) and 351 nm ultraviolet photodissociation (UVPD). Each precursor ion is isolated twice with the mass spectrometer switching between CID and UVPD activation modes to obtain a complementary MS/MS pair. To interpret these paired spectra, we modified the UVnovo de novo sequencing software to automatically learn from and interpret fragmentation spectra, provided a representative set of training data. This machine learning procedure, using random forests, synthesizes information from one or multiple complementary spectra, such as the CID/UVPD pairs, into peptide fragmentation site predictions. In doing so, the burden of fragmentation model definition shifts from programmer to machine and opens up the model parameter space for inclusion of nonobvious features and interactions. This spectral synthesis also serves to transform distinct types of spectra into a common representation for subsequent activation-independent processing steps. Then, independent from precursor activation constraints, UVnovo’s de novo sequencing procedure generates and scores sequence candidates for each precursor. We demonstrate the combined experimental and computational approach for de novo sequencing using whole cell E. coli lysate. In benchmarks on the CID/UVPD data, UVnovo assigned correct full-length sequences to 83% of the spectral pairs of doubly charged ions with high-confidence database identifications. Considering only top-ranked de novo predictions, 70% of the pairs were deciphered correctly. This de novo sequencing performance exceeds that of PEAKS and PepNovo on the CID spectra and that of UVnovo on CID or UVPD spectra alone. As presented here, the methods for paired CID/UVPD spectral acquisition and interpretation constitute a powerful workflow for high-throughput and accurate de novo peptide sequencing.
Co-reporter:Sylvester M. Greer;W. Ryan Parker
Journal of Proteome Research June 5, 2015 Volume 14(Issue 6) pp:2626-2632
Publication Date(Web):2017-2-22
DOI:10.1021/acs.jproteome.5b00165
Recent mass spectrometric studies have reported enhanced proteome coverage by employing multiple proteases or by using multiple or alternative activation methods such as electron-transfer dissociation in combination with collisional-activated dissociation (CAD). In this study the use of 193 nm ultraviolet photodissociation for the analysis of thousands of Halobacterium salinarum peptides generated by four proteases (trypsin, LysC, GluC, and chymotrypsin) was evaluated in comparison with higher energy CAD (HCD). Proteins digested by trypsin resulted in greater sequence coverage for HCD over UVPD. LysC digestion resulted in similar sequence coverages for UVPD and HCD; however, for proteins digested by GluC and chymotrypsin 5–10% more sequence coverage on average was achieved by UVPD. HCD resulted in more peptide identifications (at 1% false discovery rate) for trypsin (4356 peptides by HCD versus 3907 peptides by UVPD), whereas UVPD identified greater numbers of peptides for LysC digests (1033 peptides by UVPD versus 844 HCD), chymotrypsin digests (3219 peptides for UVPD versus 2921 for HCD), and GluC digests (2834 peptides for UVPD and 2393 for HCD) and correspondingly greater numbers of proteins.Keywords: bottom-up proteomics; chymotrypsin; GluC; Halobacterium salinarum; HCD; LysC; peptides; protease; trypsin; UVPD;
Co-reporter:Dustin R. Klein
Analytical Chemistry February 7, 2017 Volume 89(Issue 3) pp:1516-1522
Publication Date(Web):January 10, 2017
DOI:10.1021/acs.analchem.6b03353
Advances in mass spectrometry have made it a preferred tool for structural characterization of glycerophospholipids. Collisional activation methods commonly implemented on commercial instruments do not provide fragmentation patterns that allow elucidation of certain structural features, including acyl chain positions on the glycerol backbone and double bond positions within acyl chains. In the present work, 193 nm ultraviolet photodissociation (UVPD) implemented on an Orbitrap mass spectrometer is used to localize double bond positions within phosphatidylcholine (PC) acyl chains. Cleavage of the carbon–carbon bonds adjacent to the double bond provides a diagnostic mass difference of 24 Da and enables differentiation of double-bond positional isomers. The UVPD method was extended to the characterization of PCs in a bovine liver extract via a shotgun strategy. Positive mode higher energy collisional dissociation (HCD) and UVPD, and negative mode HCD were undertaken in a complementary manner to identify species as PCs and to localize double bonds, respectively.
Co-reporter:Jennifer S. Brodbelt;Dustin D. Holden
Analytical Chemistry December 20, 2016 Volume 88(Issue 24) pp:12354-12362
Publication Date(Web):November 22, 2016
DOI:10.1021/acs.analchem.6b03565
The growing use of mass spectrometry in the field of structural biology has catalyzed the development of many new strategies to examine intact proteins in the gas phase. Native mass spectrometry methods have further accelerated the need for methods that can manipulate proteins and protein complexes while minimizing disruption of noncovalent interactions critical for stabilizing conformations. Proton-transfer reactions (PTR) in the gas phase offer the ability to effectively modulate the charge states of proteins, allowing decongestion of mass spectra through separation of overlapping species. PTR was combined with ultraviolet photodissociation (UVPD) to probe the degree of structural changes that occur upon charge reduction reactions in the gas phase. For protein complexes myoglobin·heme (17.6 kDa) and dihydrofolate reductase·methotrexate (19.4 kDa), minor changes were found in the fragmentation patterns aside from some enhancement of fragmentation near the N- and C-terminal regions consistent with slight fraying. After finding little perturbation was caused by charge reduction using PTR, homodimeric superoxide dismutase/CuZn (31.4 kDa) was subjected to PTR in order to separate overlapping monomer and dimer species of the protein that were observed at identical m/z values.
Co-reporter:M. Montana Quick;M. Rachel Mehaffey
Journal of The American Society for Mass Spectrometry 2017 Volume 28( Issue 7) pp:1462-1472
Publication Date(Web):17 March 2017
DOI:10.1007/s13361-017-1650-y
N-terminal derivatization of peptides with the chromogenic reagent 4-acetamido-4-isothiocyanatostilbene-2,2-disulfonic acid (SITS) is demonstrated to enhance the efficiency of 266 nm ultraviolet photodissociation (UVPD). Attachment of the chromophore results in a mass shift of 454 Da and provides significant gains in the number and abundances of diagnostic fragment ions upon UVPD. Activation of SITS-tagged peptides with 266 nm UVPD leads to many fragment ions akin to the a/b/y ions commonly produced by CID, along with other sequence ions (c, x, and z) typically accessed through higher energy pathways. Extreme bias towards C-terminal fragment ions is observed upon activation of SITS-tagged peptides using multiple 266 nm laser pulses. Due to the high reaction efficiency of the isothiocyanate coupling to the N-terminus of peptides, we demonstrate the ability to adapt this strategy to a high-throughput LC-MS/MS workflow with 266 nm UVPD.
Co-reporter:Lindsay J. Morrison;Wenrui Chai;Jake A. Rosenberg;Graeme Henkelman;Jennifer S Brodbelt
Physical Chemistry Chemical Physics 2017 vol. 19(Issue 30) pp:20057-20074
Publication Date(Web):2017/08/02
DOI:10.1039/C7CP04073C
Determination of structure and folding of certain classes of proteins remains intractable by conventional structural characterization strategies and has spurred the development of alternative methodologies. Mass spectrometry-based approaches have a unique capacity to differentiate protein heterogeneity due to the ability to discriminate populations, whether minor or major, featuring modifications or complexation with non-covalent ligands on the basis of m/z. Cleavage of the peptide backbone can be further utilized to obtain residue-specific structural information. Here, hydrogen elimination monitoring (HEM) upon ultraviolet photodissociation (UVPD) of proteins transferred to the gas phase via nativespray ionization is introduced as an innovative approach to deduce backbone hydrogen bonding patterns. Using well-characterized peptides and a series of proteins, prediction of the engagement of the amide carbonyl oxygen of the protein backbone in hydrogen bonding using UVPD-HEM is demonstrated to show significant agreement with the hydrogen-bonding motifs derived from molecular dynamics simulations and X-ray crystal structures.
Co-reporter:Michael Cammarata;Ross Thyer;Michael Lombardo;Amy Anderson;Dennis Wright;Andrew Ellington
Chemical Science (2010-Present) 2017 vol. 8(Issue 5) pp:4062-4072
Publication Date(Web):2017/05/03
DOI:10.1039/C6SC05235E
Pathogenic Escherichia coli, one of the primary causes of urinary tract infections, has shown significant resistance to the most popular antibiotic, trimethoprim (TMP), which inhibits dihydrofolate reductase (DHFR). The resistance is modulated by single point mutations of DHFR. The impact of two clinically relevant mutations, P21L and W30R, on the activity of DHFR was evaluated via measurement of Michaelis–Menten and inhibitory kinetics, and structural characterization was undertaken by native mass spectrometry with ultraviolet photodissociation (UVPD). Compared to WT-DHFR, both P21L and W30R mutants produced less stable complexes with TMP in the presence of co-factor NADPH as evidenced by the relative abundances of complexes observed in ESI mass spectra. Moreover, based on variations in the fragmentation patterns obtained by UVPD mass spectrometry of binary and ternary DHFR complexes, notable structural changes were localized to the substrate binding pocket for W30R and to the M20 loop region as well as the C-terminal portion containing the essential G–H functional loop for the P21L mutant. The results suggest that the mutations confer resistance through distinctive mechanisms. A novel propargyl-linked antifolate compound 1038 was shown to be a reasonably effective inhibitor of the P21L mutant.
Co-reporter:Dustin D. Holden and Jennifer S. Brodbelt
Analytical Chemistry 2017 Volume 89(Issue 1) pp:
Publication Date(Web):December 6, 2016
DOI:10.1021/acs.analchem.6b03777
Confident protein identifications derived from high-throughput bottom-up and top-down proteomics workflows depend on acquisition of thousands of tandem mass spectrometry (MS/MS) spectra with adequate signal-to-noise and accurate mass assignments of the fragment ions. Ultraviolet photodissociation (UVPD) using 193 nm photons has proven to be well-suited for activation and fragmentation of peptides and proteins in ion trap mass spectrometers, but the spectral signal-to-noise ratio (S/N) is typically lower than that obtained from collisional activation methods. The lower S/N is attributed to the dispersion of ion current among numerous fragment ion channels (a,b,c,x,y,z ions). In addition, frequently UVPD is performed such that a relatively large population of precursor ions remains undissociated after the UV photoactivation period in order to prevent overdissociation into small uninformative or internal fragment ions. Here we report a method to improve spectral S/N and increase the accuracy of mass assignments of UVPD mass spectra via resonance ejection of undissociated precursor ions after photoactivation. This strategy, termed precursor ejection UVPD or PE-UVPD, allows the ion trap to be filled with more ions prior to UVPD while at the same time alleviating the space charge problems that would otherwise contribute to the skewing of mass assignments and reduction of S/N. Here we report the performance gains by implementation of PE-UVPD for peptide analysis in an ion trap mass spectrometer.
Co-reporter:Joshua E. Mayfield, Michelle R. Robinson, Victoria C. Cotham, Seema Irani, Wendy L. Matthews, Anjana Ram, David S. Gilmour, Joe R. Cannon, Yan Jessie ZhangJennifer S. Brodbelt
ACS Chemical Biology 2017 Volume 12(Issue 1) pp:
Publication Date(Web):November 17, 2016
DOI:10.1021/acschembio.6b00729
Phosphorylation of the C-terminal domain of RNA polymerase II (CTD) plays an essential role in eukaryotic transcription by recruiting transcriptional regulatory factors to the active polymerase. However, the scarcity of basic residues and repetitive nature of the CTD sequence impose a huge challenge for site-specific characterization of phosphorylation, hindering our understanding of this crucial biological process. Herein, we apply LC-UVPD-MS methods to analyze post-translational modification along native sequence CTDs. Application of our method to the Drosophila melanogaster CTD reveals the phosphorylation pattern of this model organism for the first time. The divergent nature of fly CTD allows us to derive rules defining how flanking residues affect phosphorylation choice by CTD kinases. Our data support the use of LC-UVPD-MS to decipher the CTD code and determine rules that program its function.
Co-reporter:Michael B. Cammarata, Christopher L. Schardon, M. Rachel Mehaffey, Jake Rosenberg, Jonathan Singleton, Walter Fast, and Jennifer S. Brodbelt
Journal of the American Chemical Society 2016 Volume 138(Issue 40) pp:13187-13196
Publication Date(Web):September 25, 2016
DOI:10.1021/jacs.6b04474
Single-residue mutations at Gly12 (G12X) in the GTP-ase protein K-Ras can lead to activation of different downstream signaling pathways, depending on the identity of the mutation, through a poorly defined mechanism. Herein, native mass spectrometry combined with top-down ultraviolet photodissociation (UVPD) was employed to investigate the structural changes occurring from G12X mutations of K-Ras. Complexes between K-Ras or the G12X mutants and guanosine 5′-diphosphate (GDP) or GDPnP (a stable GTP analogue) were transferred to the gas phase by nano-electrospray ionization and characterized using UVPD. Variations in the efficiencies of backbone cleavages were observed upon substitution of GDPnP for GDP as well as for the G12X mutants relative to wild-type K-Ras. An increase in the fragmentation efficiency in the segment containing the first 50 residues was observed for the K-Ras/GDPnP complexes relative to the K-Ras/GDP complexes, whereas a decrease in fragmentation efficiency occurred in the segment containing the last 100 residues. Within these general regions, the specific residues at which changes in fragmentation efficiency occurred correspond to the phosphate and guanine binding regions, respectively, and are indicative of a change in the binding motif upon replacement of the ligand (GDP versus GDPnP). Notably, unique changes in UVPD were observed for each G12X mutant with the cysteine and serine mutations exhibiting similar UVPD changes whereas the valine mutation was significantly different. These findings suggest a mechanism that links the identity of the G12X substitution to different downstream effects through long-range conformational or dynamic effects as detected by variations in UVPD fragmentation.
Co-reporter:Lindsay J. Morrison and Jennifer S. Brodbelt
Journal of the American Chemical Society 2016 Volume 138(Issue 34) pp:10849-10859
Publication Date(Web):August 2, 2016
DOI:10.1021/jacs.6b03905
Protein–protein interfaces and architecture are critical to the function of multiprotein complexes. Mass spectrometry-based techniques have emerged as powerful strategies for characterization of protein complexes, particularly for heterogeneous mixtures of structures. In the present study, activation and dissociation of three tetrameric protein complexes (streptavidin, transthyretin, and hemoglobin) in the gas phase was undertaken by 193 nm ultraviolet photodissociation (UVPD) for the characterization of higher order structure. High pulse energy UVPD resulted in the production of dimers and low charged monomers exhibiting symmetrical charge partitioning among the subunits (the so-called symmetrical dissociation pathways), consistent with the subunit organization of the complexes. In addition, UVPD promoted backbone cleavages of the monomeric subunits, the abundances of which corresponded to the more flexible loop regions of the proteins.
Co-reporter:Dustin D. Holden, William M. McGee, and Jennifer S. Brodbelt
Analytical Chemistry 2016 Volume 88(Issue 1) pp:1008
Publication Date(Web):December 3, 2015
DOI:10.1021/acs.analchem.5b03911
We report the implementation of proton transfer reactions (PTR) and ion parking on an Orbitrap mass spectrometer. PTR/ion parking allows charge states of proteins to be focused into a single lower charge state via sequential deprotonation reactions with a proton scavenging reagent, in this case, a nitrogen-containing adduct of fluoranthene. Using PTR and ion parking, we evaluate the charge state dependence of fragmentation of ubiquitin (8.6 kDa), myoglobin (17 kDa), and carbonic anhydrase (29 kDa) upon higher energy collisional dissociation (HCD) or ultraviolet photodissociation (UVPD). UVPD exhibited less charge state dependence, thus yielding more uniform distributions of cleavages along the protein backbone and consequently higher sequence coverage than HCD. HCD resulted in especially prominent cleavages C-terminal to amino acids containing acidic side-chains and N-terminal to proline residues; UVPD did not exhibit preferential cleavage adjacent to acidic residues but did show enhancement next to proline and phenylalanine.
Co-reporter:Victoria C. Cotham and Jennifer S. Brodbelt
Analytical Chemistry 2016 Volume 88(Issue 7) pp:4004
Publication Date(Web):March 5, 2016
DOI:10.1021/acs.analchem.6b00302
Monoclonal antibodies (mAbs) are a rapidly advancing class of therapeutic glycoproteins that possess wide clinical utility owing to their biocompatibility, high antigen specificity, and targeted immune stimulation. These therapeutic properties depend greatly on the composition of the immunoglobulin G (IgG) structure, both in terms of primary sequence and post-translational modifications (PTMs); however, large-scale production in cell culture often results in heterogeneous mixtures that can profoundly affect clinical safety and efficacy. This places a high demand on analytical methods that afford comprehensive structural characterization of mAbs to ensure their stringent quality control. Here we report the use of targeted middle-down 193 nm ultraviolet photodissociation (UVPD) to provide detailed primary sequence analysis and PTM site localization of therapeutic monoclonal antibody subunits (∼25 kDa) generated upon digestion with recombinant immunoglobulin G-degrading enzyme of Streptococcus pyogenes (IdeS) followed by chemical reduction. Under optimal conditions, targeted UVPD resulted in approximately 60% overall coverage of the IgG sequence, in addition to unambiguous glycosylation site localization and extensive coverage of the antigen-binding complementarity determining regions (CDRs) in a single LC-MS/MS experiment. Combining UVPD and ETD data afforded even deeper sequencing and greater overall characterization of IgG subunits. Overall, this targeted UVPD approach represents a promising new strategy for the comprehensive characterization of antibody-based therapeutics.
Co-reporter:Michelle R. Robinson and Jennifer S. Brodbelt
Analytical Chemistry 2016 Volume 88(Issue 22) pp:11037
Publication Date(Web):October 21, 2016
DOI:10.1021/acs.analchem.6b02899
Tyrosine sulfation is an important post-translational modification but remains difficult to detect in biological samples owing to its low stoichiometric abundance and the lack of effective enrichment methods. In the present study, weak anion exchange (WAX) is evaluated for the enrichment of sulfopeptides that have been modified via carbamylation to convert all primary amines to less basic carbamates. The decrease in basicity enhanced the binding of carbamylated sulfopeptides to WAX resin relative to nonsulfated peptides. Upon elution and electrospray ionization in the negative mode, ultraviolet photodissociation (UVPD) was applied for peptide sequencing. Application of the method to a tryptic digest of bovine coagulation factor V resulted in identification of sulfation on tyrosine 1513.
Co-reporter:W. Ryan Parker, Dustin D. Holden, Victoria C. Cotham, Hua Xu, and Jennifer S. Brodbelt
Analytical Chemistry 2016 Volume 88(Issue 14) pp:7222
Publication Date(Web):June 18, 2016
DOI:10.1021/acs.analchem.6b01465
The tremendous number of peptides identified in current bottom-up mass spectrometric workflows, although impressive for high-throughput proteomics, results in little selectivity for more targeted applications. We describe a strategy for cysteine-selective proteomics based on a tagging method that installs a S–Se bond in peptides that is cleavable upon 266 nm ultraviolet photodissociation (UVPD). The alkylating reagent, N-(phenylseleno)phthalimide (NPSP), reacts with free thiols in cysteine residues and attaches a chromogenic benzeneselenol (SePh) group. Upon irradiation of tagged peptides with 266 nm photons, the S–Se bond is selectively cleaved, releasing a benzeneselenol moiety corresponding to a neutral loss of 156 Da per cysteine. Herein we demonstrate a new MS/MS scan mode, UVPDnLossCID, which facilitates selective screening of cysteine-containing peptides. A “prescreening” event occurs by activation of the top N peptide ions by 266 nm UVPD. Peptides exhibiting a neutral loss corresponding to one or more SePh groups are reactivated and sequenced by CID. Because of the low frequency of cysteine in the proteome, unique cysteine-containing peptides may serve as surrogates for entire proteins. UVPDnLossCID does not generate as many peptide spectrum matches (PSMs) as conventional bottom-up methods; however, UVPDnLossCID provides far greater selectivity.
Co-reporter:Victoria C. Cotham, William M. McGee, and Jennifer S. Brodbelt
Analytical Chemistry 2016 Volume 88(Issue 16) pp:8158
Publication Date(Web):July 28, 2016
DOI:10.1021/acs.analchem.6b01901
The labile nature of phosphoryl groups has presented a long-standing challenge for the characterization of protein phosphorylation via conventional mass spectrometry-based bottom-up proteomics methods. Collision-induced dissociation (CID) causes preferential cleavage of the phospho-ester bond of peptides, particularly under conditions of low proton mobility, and results in the suppression of sequence-informative fragmentation that often prohibits phosphosite determination. In the present study, the fragmentation patterns of phosphopeptides are improved through ion/ion-mediated peptide derivatization with 4-formyl-1,3-benezenedisulfonic acid (FBDSA) anions using a dual spray reactor. This approach exploits the strong electrostatic interactions between the sulfonate moieties of FBDSA and basic sites to facilitate gas-phase bioconjugation and to reduce charge sequestration and increase the yield of phosphate-retaining sequence ions upon CID. Moreover, comparative CID fragmentation analysis between unmodified phosphopeptides and those modified online with FBDSA or in solution via carbamylation and 4-sulfophenyl isothiocyanate (SPITC) provided evidence for sulfonate interference with charge-directed mechanisms that result in preferential phosphate elimination. Our results indicate the prominence of charge-directed neighboring group participation reactions involved in phosphate neutral loss, and the implementation of ion/ion reactions in a dual spray reactor setup provides a means to disrupt the interactions by competing hydrogen-bonding interactions between sulfonate groups and the side chains of basic residues.
Co-reporter:Scott A. Robotham, Andrew P. Horton, Joe R. Cannon, Victoria C. Cotham, Edward M. Marcotte, and Jennifer S. Brodbelt
Analytical Chemistry 2016 Volume 88(Issue 7) pp:3990
Publication Date(Web):March 3, 2016
DOI:10.1021/acs.analchem.6b00261
De novo peptide sequencing by mass spectrometry represents an important strategy for characterizing novel peptides and proteins, in which a peptide’s amino acid sequence is inferred directly from the precursor peptide mass and tandem mass spectrum (MS/MS or MS3) fragment ions, without comparison to a reference proteome. This method is ideal for organisms or samples lacking a complete or well-annotated reference sequence set. One of the major barriers to de novo spectral interpretation arises from confusion of N- and C-terminal ion series due to the symmetry between b and y ion pairs created by collisional activation methods (or c, z ions for electron-based activation methods). This is known as the “antisymmetric path problem” and leads to inverted amino acid subsequences within a de novo reconstruction. Here, we combine several key strategies for de novo peptide sequencing into a single high-throughput pipeline: high-efficiency carbamylation blocks lysine side chains, and subsequent tryptic digestion and N-terminal peptide derivatization with the ultraviolet chromophore AMCA yield peptides susceptible to 351 nm ultraviolet photodissociation (UVPD). UVPD-MS/MS of the AMCA-modified peptides then predominantly produces y ions in the MS/MS spectra, specifically addressing the antisymmetric path problem. Finally, the program UVnovo applies a random forest algorithm to automatically learn from and then interpret UVPD mass spectra, passing results to a hidden Markov model for de novo sequence prediction and scoring. We show this combined strategy provides high-performance de novo peptide sequencing, enabling the de novo sequencing of thousands of peptides from an Escherichia coli lysate at high confidence.
Co-reporter:Lindsay J. Morrison, W. Ryan Parker, Dustin D. Holden, Jeremy C. Henderson, Joseph M. Boll, M. Stephen Trent, and Jennifer S. Brodbelt
Analytical Chemistry 2016 Volume 88(Issue 3) pp:1812
Publication Date(Web):January 4, 2016
DOI:10.1021/acs.analchem.5b04098
The lipid A domain of the endotoxic lipopolysaccharide layer of Gram-negative bacteria is comprised of a diglucosamine backbone to which a variable number of variable length fatty acyl chains are anchored. Traditional characterization of these tails and their linkages by nuclear magnetic resonance (NMR) or mass spectrometry is time-consuming and necessitates databases of pre-existing structures for structural assignment. Here, we introduce an automated de novo approach for characterization of lipid A structures that is completely database-independent. A hierarchical decision-tree MSn method is used in conjunction with a hybrid activation technique, UVPDCID, to acquire characteristic fragmentation patterns of lipid A variants from a number of Gram-negative bacteria. Structural assignments are derived from integration of key features from three to five spectra and automated interpretation is achieved in minutes without the need for pre-existing information or candidate structures. The utility of this strategy is demonstrated for a mixture of lipid A structures from an enzymatically modified E. coli lipid A variant. A total of 27 lipid A structures were discovered, many of which were isomeric, showcasing the need for a rapid de novo approach to lipid A characterization.
Co-reporter:Jennifer S. Brodbelt
Analytical Chemistry 2016 Volume 88(Issue 1) pp:30
Publication Date(Web):December 2, 2015
DOI:10.1021/acs.analchem.5b04563
Co-reporter:Dustin R. Klein, Dustin D. Holden, and Jennifer S. Brodbelt
Analytical Chemistry 2016 Volume 88(Issue 1) pp:1044
Publication Date(Web):November 28, 2015
DOI:10.1021/acs.analchem.5b04218
Detailed structural characterization of intact rough-type lipopolysaccharides (R-LPS) was accomplished using a multi-stage mass spectrometry (MS3) strategy consisting of collision-induced dissociation (CID) followed by 193 ultraviolet photodissociation (UVPD) implemented on an Orbitrap Fusion mass spectrometer. Complex mixtures of R-LPS from either Escherichia coli or Salmonella enterica were directly infused into the mass spectrometer using static source nanoelectrospray ionization (nanoESI). An initial CID event performed on an R-LPS precursor produced spectra with abundant ions corresponding to the lipid A and core oligosaccharide (OS) substructures. Comparison of CID spectra of R-LPS ions with varying lipid A and core OS structures verifies that lipid A and core OS ions are consistently produced in high abundance. The resulting lipid A and core OS ions were subsequently activated by CID, high-energy collision-induced dissociation (HCD), or UVPD. For both the lipid A and core OS substructures, HCD and UVPD produced highly informative complementary spectra, with UVPD of the core OS producing an extensive array of cross-ring cleavage fragments. Successful discernment of E. coli R-LPS structures with isomeric core structures confirmed the degree to which subtle structural differences could be determined using this method.
Co-reporter:Michelle R. Robinson; Juliana M. Taliaferro; Kevin N. Dalby
Journal of Proteome Research 2016 Volume 15(Issue 8) pp:2739-2748
Publication Date(Web):July 18, 2016
DOI:10.1021/acs.jproteome.6b00289
Advances in liquid chromatography tandem mass spectrometry (LC–MS/MS) have permitted phosphoproteomic analysis on a grand scale, but ongoing challenges specifically associated with confident phosphate localization continue to motivate the development of new fragmentation techniques. In the present study, ultraviolet photodissociation (UVPD) at 193 nm is evaluated for the characterization of phosphopeptides in both positive and negative ion modes. Compared to the more standard higher energy collisional dissociation (HCD), UVPD provided more extensive fragmentation with improved phosphate retention on product ions. Negative mode UVPD showed particular merit for detecting and sequencing highly acidic phosphopeptides from alpha and beta casein, but was not as robust for larger scale analysis because of lower ionization efficiencies in the negative mode. HeLa and HCC70 cell lysates were analyzed by both UVPD and HCD. While HCD identified more phosphopeptides and proteins compared to UVPD, the unique matches from UVPD analysis could be combined with the HCD data set to improve the overall depth of coverage compared to either method alone.
Co-reporter:Lindsay J. Morrison and Jennifer S. Brodbelt
Analyst 2016 vol. 141(Issue 1) pp:166-176
Publication Date(Web):13 Nov 2015
DOI:10.1039/C5AN01819F
Characterization of all gas-phase charge sites of natively sprayed proteins and peptides is demonstrated using 193 nm UVPD. The high sequence coverage offered by UVPD is exploited for the accurate determination of charge sites in protein systems up to 18 kDa, allowing charge site to be studied as a function of protein conformation and the presence of disulfide bonds. Charging protons are found on both basic sidechains and on the amide backbone of less basic amino acids such as serine, glutamine, and proline. UVPD analysis was performed on the 3+ charge state of melittin, the 5+ to 8+ charge states of ubiquitin, and the 8+ charge state of reduced and oxidized β-lactoglobulin. The location of charges in gas-phase proteins is known to impact structure; molecular modeling of different charge site motifs of 3+ melittin demonstrates how placement of protons in simulations can dramatically impact the predicted structure of the molecule. The location of positive charge sites in ubiquitin and β-lactoglobulin are additionally found to depend on the presence or absence of salt-bridges, columbic repulsion across the length of the peptide, and protein conformation. Charge site isomers are demonstrated for ubiquitin and β-lactoglobulin but found to be much less numerous than previously predicted.
Co-reporter:Jenny Brodbelt
Journal of The American Society for Mass Spectrometry 2016 Volume 27( Issue 1) pp:3
Publication Date(Web):2016 January
DOI:10.1007/s13361-015-1301-0
Co-reporter:Christopher M. Crittenden;W. Ryan Parker
Journal of The American Society for Mass Spectrometry 2016 Volume 27( Issue 5) pp:856-863
Publication Date(Web):2016 May
DOI:10.1007/s13361-016-1355-7
A method to facilitate the characterization of stapled or cyclic peptides is reported via an arginine-selective derivatization strategy coupled with MS/MS analysis. Arginine residues are converted to ornithine residues through a deguanidination reaction that installs a highly selectively cleavable site in peptides. Upon activation by CID or UVPD, the ornithine residue cyclizes to promote cleavage of the adjacent amide bond. This Arg-specific process offers a unique strategy for site-selective ring opening of stapled and cyclic peptides. Upon activation of each derivatized peptide, site-specific backbone cleavage at the ornithine residue results in two complementary products: the lactam ring-containing portion of the peptide and the amine-containing portion. The deguanidination process not only provides a specific marker site that initiates fragmentation of the peptide but also offers a means to unlock the staple and differentiate isobaric stapled peptides.
Co-reporter:W. Ryan Parker
Journal of The American Society for Mass Spectrometry 2016 Volume 27( Issue 8) pp:1344-1350
Publication Date(Web):2016 August
DOI:10.1007/s13361-016-1405-1
Characterization of the cysteine content of proteins is a key aspect of proteomics. By defining both the total number of cysteines and their bound/unbound state, the number of candidate proteins considered in database searches is significantly constrained. Herein we present a methodology that utilizes 266 nm UVPD to count the number of free and bound cysteines in intact proteins. In order to attain this goal, proteins were derivatized with N-(phenylseleno)phthalimide (NPSP) to install a selectively cleavable Se–S bond upon 266 UVPD. The number of Se–S bonds cleaved upon UVPD, a process that releases SePh moieties, corresponds to the number of cysteine residues per protein.
Co-reporter:Lindsay J. Morrison;Jake A. Rosenberg
Journal of The American Society for Mass Spectrometry 2016 Volume 27( Issue 9) pp:1443-1453
Publication Date(Web):2016 September
DOI:10.1007/s13361-016-1418-9
Dissociation of proteins and peptides by 193 nm ultraviolet photodissociation (UVPD) has gained momentum in proteomic studies because of the diversity of backbone fragments that are produced and subsequent unrivaled sequence coverage obtained by the approach. The pathways that form the basis for the production of particular ion types are not completely understood. In this study, a statistical approach is used to probe hydrogen atom elimination from a + 1 radical ions, and different extents of elimination are found to vary as a function of the identity of the C-terminal residue of the a product ions and the presence or absence of hydrogen bonds to the cleaved residue.
Co-reporter:Michael B. Cammarata; Ross Thyer; Jake Rosenberg; Andrew Ellington
Journal of the American Chemical Society 2015 Volume 137(Issue 28) pp:9128-9135
Publication Date(Web):June 30, 2015
DOI:10.1021/jacs.5b04628
The stepwise reduction of dihydrofolate to tetrahydrofolate entails significant conformational changes of dihydrofolate reductase (DHFR). Binary and ternary complexes of DHFR containing cofactor NADPH, inhibitor methotrexate (MTX), or both NADPH and MTX were characterized by 193 nm ultraviolet photodissociation (UVPD) mass spectrometry. UVPD yielded over 80% sequence coverage of DHFR and resulted in production of fragment ions that revealed the interactions between DHFR and each ligand. UVPD of the binary DHFR·NADPH and DHFR·MTX complexes led to an unprecedented number of fragment ions containing either an N- or C-terminal protein fragment still bound to the ligand via retention of noncovalent interactions. In addition, holo-fragments retaining both ligands were observed upon UVPD of the ternary DHFR·NADPH·MTX complex. The combination of extensive holo and apo fragment ions allowed the locations of the NADPH and MTX ligands to be mapped, with NADPH associated with the adenosine binding domain of DHFR and MTX interacting with the loop domain. These findings are consistent with previous crystallographic evidence. Comparison of the backbone cleavage propensities for apo DHFR and its holo counterparts revealed significant variations in UVPD fragmentation in the regions expected to experience conformational changes upon binding NADPH, MTX, or both ligands. In particular, the subdomain rotation and loop movements, which are believed to occur upon formation of the transition state of the ternary complex, are reflected in the UVPD mass spectra. The UVPD spectra indicate enhanced backbone cleavages in regions that become more flexible or show suppressed backbone cleavages for those regions either shielded by the ligand or involved in new intramolecular interactions. This study corroborates the versatility of 193 nm UVPD mass spectrometry as a sensitive technique to track enzymatic cycles that involve conformational rearrangements.
Co-reporter:Michael B. Cammarata and Jennifer S. Brodbelt
Chemical Science 2015 vol. 6(Issue 2) pp:1324-1333
Publication Date(Web):26 Nov 2014
DOI:10.1039/C4SC03200D
Ultraviolet photodissociation (UVPD) mass spectrometry is employed to investigate the structure of holo-myoglobin as well as its apo form transferred to the gas phase by native electrospray. UVPD provided insight into the stability of native structural elements of holo-myoglobin. The fragmentation yields from UVPD showed the greatest overall correlation with B-factors generated from the crystal structure of apo-myoglobin, particularly for the more disordered loop regions. Solvent accessibility measurements also showed some correlation with the UVPD fragmentation of holo-myoglobin. Comparison of UVPD of holo- and apo-myoglobin revealed similarities in fragmentation yields, particularly for the lower charge states (8 and 9+). Both holo- and apo-myoglobin exhibited low fragmentation yields for the AGH helical core, whereas regions known to interact with the heme show suppressed fragmentation for holo-myoglobin. The fragment yields from HCD showed the lowest correlation with B-factor values and rather reflected preferential charge-directed backbone cleavages.
Co-reporter:Joe R. Cannon, Kirby Martinez-Fonts, Scott A. Robotham, Andreas Matouschek, and Jennifer S. Brodbelt
Analytical Chemistry 2015 Volume 87(Issue 3) pp:1812
Publication Date(Web):January 5, 2015
DOI:10.1021/ac5038363
Protein ubiquitin modifications present a vexing analytical challenge, because of the dynamic changes in the site of modification on the substrate, the number of ubiquitin moieties attached, and the diversity of linkage patterns in which they are attached. Presented here is a method to confidently assign size and linkage type of polyubiquitin modifications. The method combines intact mass measurement to determine the number of ubiquitin moieties in the chain with backbone fragmentation by 193-nm ultraviolet photodissociation (UVPD) to determine the linkage pattern. UVPD fragmentation of proteins leads to reproducible backbone cleavage at almost every inter-residue position, and in polyubiquitin chains, the N-terminally derived fragments from each constituent monomer are identical, up to the site of conjugation. The N-terminal ubiquitin fragment ions are superimposed to create a diagnostic pattern that allows easy recognition of the dominant chain linkages. The method is demonstrated by achieving almost-complete fragmentation of monoubiquitin and then, subsequently, fragmentation of dimeric, tetrameric, and longer Lys48- and Lys63-linked ubiquitin chains. The utility of the method for the analysis of mixed linkage chains is confirmed for mixtures of Lys48 and Lys63 tetramers with known relative concentrations and for an in vitro-formulated ubiquitin chain attached to a substrate protein.
Co-reporter:Victoria C. Cotham, Jared B. Shaw, and Jennifer S. Brodbelt
Analytical Chemistry 2015 Volume 87(Issue 18) pp:9396
Publication Date(Web):August 25, 2015
DOI:10.1021/acs.analchem.5b02242
Fast online chemical derivatization of peptides with an aromatic label for enhanced 193 nm ultraviolet photodissociation (UVPD) is demonstrated using a dual electrospray reactor implemented on the front-end of a linear ion trap (LIT) mass spectrometer. The reactor facilitates the intersection of protonated peptides with a second population of chromogenic 4-formyl-1,3-benzenedisulfonic acid (FBDSA) anions to promote real-time formation of ion/ion complexes at atmospheric pressure. Subsequent collisional activation of the ion/ion intermediate results in Schiff base formation generated via reaction between a primary amine in the peptide cation and the aldehyde moiety of the FBDSA anion. Utilizing 193 nm UVPD as the subsequent activation step in the MS3 workflow results in acquisition of greater primary sequence information relative to conventional collision induced dissociation (CID). Furthermore, Schiff-base-modified peptides exhibit on average a 20% increase in UVPD efficiency compared to their unmodified counterparts. Due to the efficiency of covalent labeling achieved with the dual spray reactor, we demonstrate that this strategy can be integrated into a high-throughput LC-MSn workflow for rapid derivatization of peptide mixtures.
Co-reporter:Alex Bishop, Jennifer S. Brodbelt
International Journal of Mass Spectrometry 2015 Volume 378() pp:127-133
Publication Date(Web):15 February 2015
DOI:10.1016/j.ijms.2014.07.024
•Peptides are modified with disulfide- or hydrazine-containing tags.•Preferential NN and SS cleavage occurs upon electron transfer dissociation.•N-terminal modified peptides show more efficient cleavage.•Side-chain losses are prominent for disulfide-modified peptides.Site-selective bond cleavage is an interesting but infrequently observed process in gas phase ions. We report the comparison of highly efficient and specific NN and SS cleavages in peptides modified at their N- or C-terminal with tags that contain a disulfide or a hydrazine-type bond. Preferential NN or SS cleavage occurs upon electron transfer dissociation (ETD) of the doubly-protonated modified peptides. Peptides modified at the N-terminal exhibit more efficient cleavage of NN or SS bonds than those modified at the C-terminal. The difference in cleavage efficiency is proposed to originate from variations in the tendency of hydrogen atoms to migrate to or localize at the NN and SS functionalities, a process that is essential for the bond cleavage. Collision induced dissociation (CID) of the peptides after the preferential bond cleavage results in formation of characteristic b and y ions, not the ETD-type c/z ions more typical of peptide radicals. For the peptides that incorporate the disulfide-containing moiety, prominent side-chain cleavages of isoleucine and leucine are also observed.
Co-reporter:Byoung Joon Ko, Jennifer S. Brodbelt
International Journal of Mass Spectrometry 2015 Volume 377() pp:385-392
Publication Date(Web):1 February 2015
DOI:10.1016/j.ijms.2014.07.032
•UVPD and CID spectra were compared for protonated and deprotonated glycopeptides.•UVPD of protonated peptides resulted in primarily glycan cleavages.•UVPD of deprotonated peptides generated a/x-type ions and glycan cleavages.A comparison of the fragmentation pathways of both protonated and deprotonated O-linked glycopeptides from fetuin and κ-casein obtained upon collision induced dissociation (CID) and 193 nm ultraviolet photodissociation (UVPD) in a linear ion trap is presented. A strategy using non-specific pronase digestion, zwitterionic hydrophilic interaction liquid chromatography (ZIC–HILIC) solid phase extraction (SPE) enrichment, and nano-liquid chromatography (nano-LC) is employed. UVPD of deprotonated glycopeptides generally produced the greatest array of fragment ions, thus affording the most diagnostic information about both glycan structure and peptide sequence. In addition, UVPD generated unique fragment ion such as Y-type ions arising from cleavage at the N-terminus of proline. CID and UVPD of protonated glycopeptides produced fragment ions solely from glycan cleavages.
Co-reporter:Jennifer S. Brodbelt;David H. Russell
Journal of The American Society for Mass Spectrometry 2015 Volume 26( Issue 11) pp:1797-1798
Publication Date(Web):2015 November
DOI:10.1007/s13361-015-1264-1
Co-reporter:Scott A. Robotham
Journal of The American Society for Mass Spectrometry 2015 Volume 26( Issue 9) pp:1570-1579
Publication Date(Web):2015 September
DOI:10.1007/s13361-015-1186-y
In an effort to better characterize the fragmentation pathways promoted by ultraviolet photoexcitation in comparison to collision induced dissociation (CID), six adrenocorticotropic hormone (ACTH) peptides in a range of charge states were subjected to 266 nm ultraviolet photodissociation (UVPD), 193 nm UVPD, and CID. Similar fragment ions and distributions were observed for 266 nm UVPD and 193 nm UVPD for all peptides investigated. While both UVPD and CID led to preferential cleavage of the Y–S bond for all ACTH peptides [except ACTH (1-39)], UVPD was far less dependent on charge state and location of basic sites for the production of C-terminal and N-terminal ions. For ACTH (1-16), ACTH (1-17), ACTH (1-24), and ACTH (1-39), changes in the distributions of fragment ion types (a, b, c, x, y, z, and collectively N-terminal ions versus C-terminal ions) showed only minor changes upon UVPD for all charge states. In contrast, CID displayed significant changes in the fragment ion type distributions as a function of charge state, an outcome consistent with the dependence on the number and location of mobile protons that is not prominent for UVPD. Sequence coverages obtained by UVPD showed less dependence on charge state than those determined by CID, with the latter showing a consistent decrease in coverage as charge state increased.
Co-reporter:John P. O’Brien ; Wenzong Li ; Yan Zhang
Journal of the American Chemical Society 2014 Volume 136(Issue 37) pp:12920-12928
Publication Date(Web):August 22, 2014
DOI:10.1021/ja505217w
Ultraviolet photodissociation (UVPD) mass spectrometry (MS) was used to characterize the sequences of proteins in native protein–ligand and protein–protein complexes and to provide auxiliary information about the binding sites of the ligands and protein–protein interfaces. UVPD outperformed collisional induced dissociation (CID), higher-energy collisional dissociation (HCD), and electron transfer dissociation (ETD) in terms of yielding the most comprehensive diagnostic primary sequence information about the proteins in the complexes. UVPD also generated noncovalent fragment ions containing a portion of the protein still bound to the ligand which revealed some insight into the nature of the binding sites of myoglobin/heme, eIF4E/m7GTP, and human peptidyl-prolyl cis–trans isomerase 1 (Pin1) in complex with the peptide derived from the C-terminal domain of RNA polymerase II (CTD). Noncovalently bound protein–protein fragment ions from oligomeric β-lactoglobulin dimers and hexameric insulin complexes were also produced upon UVPD, providing some illumination of tertiary and quaternary protein structural features.
Co-reporter:John P. O'Brien, Brittany D. Needham, Dusty B. Brown, M. Stephen Trent and Jennifer S. Brodbelt
Chemical Science 2014 vol. 5(Issue 11) pp:4291-4301
Publication Date(Web):04 Jul 2014
DOI:10.1039/C4SC01034E
Re-modelling of lipopolysaccharides, which are the primary constituent of the outer cell membrane of Gram-negative bacteria, modulates pathogenesis and resistance to microbials. Reported herein is the characterization of intact Gram-negative bacterial lipooligosaccharides (LOS) via a new strategy utilizing online liquid chromatography (LC) coupled with ultraviolet photodissociation (UVPD) mass spectrometry. Compared to collision-based MS/MS methods, UVPD and UVPD/HCD promoted a greater array of cleavages within both the glycan and lipid moieties, including C–C, C–N, C–O cleavages in the acyl chains as well as glycosidic and cross-ring cleavages, thus providing the most far-reaching structural characterization of LOS. This LC-MS/MS strategy affords a robust analytical method to structurally characterize complex mixtures of bacterial endotoxins that maintains the integrity of the core oligosaccharide and lipid A domains of LOS, providing direct feedback about the cell envelope architectures and LOS modification strategies involved in resistance of the host innate immune defense.
Co-reporter:Julia R. Aponte, Lisa Vasicek, Jagannath Swaminathan, Hua Xu, Myong Chul Koag, Seongmin Lee, and Jennifer S. Brodbelt
Analytical Chemistry 2014 Volume 86(Issue 13) pp:6237
Publication Date(Web):June 4, 2014
DOI:10.1021/ac403654m
We report a fast and highly efficient diazonium reaction that couples a nitroazobenzene chromophore to tyrosine and histidine residues, thus endowing peptides with high photoabsorption cross sections at 351 nm in the gas phase. Only the tagged peptides undergo ultraviolet photodissociation (UVPD) at 351 nm, as demonstrated for several Tyr- and His-containing peptides from protein digests. Additional selectivity is achieved by the integration of the UVPD-MS method with an in silico database search restricted to Tyr- and His-containing peptides. A modified MassMatrix algorithm condenses analysis by filtering the input database file to include Tyr/His-containing peptides only, thus reducing the search space and increasing confidence. In summary, derivatization of specific amino acid residues in conjunction with selective activation of the derivatized peptides provides a streamlined approach to shotgun proteomics.
Co-reporter:John P. O’Brien, Brittany D. Needham, Jeremy C. Henderson, Emily M. Nowicki, M. Stephen Trent, and Jennifer S. Brodbelt
Analytical Chemistry 2014 Volume 86(Issue 4) pp:2138
Publication Date(Web):January 21, 2014
DOI:10.1021/ac403796n
Here we implement ultraviolet photodissociation (UVPD) in an online liquid chromatographic tandem mass spectrometry (MS/MS) strategy to support analysis of complex mixtures of lipid A combinatorially modified during development of vaccine adjuvants. UVPD mass spectrometry at 193 nm was utilized to characterize the structures and fragment ion types of lipid A from Escherichia coli, Vibrio cholerae, and Pseudomonas aeruginosa using an Orbitrap mass spectrometer. The fragment ions generated by UVPD were compared to those from collision induced dissociation (CID) and higher energy collision dissociation (HCD) with respect to the precursor charge state. UVPD afforded the widest array of fragment ion types including acyl chain C–O, C–N, and C–C bond cleavages and glycosidic C–O and cross ring cleavages, thus providing the most comprehensive structural analysis of the lipid A. UVPD exhibited virtually no dependence on precursor ion charge state and was best at determining lipid A structure including acyl chain length and composition, giving it an advantage over collision based methods. UVPD was incorporated into an LC–MS/MS methodology for the analysis of a number of structural variants in a complex mixture of combinatorially engineered Escherichia coli lipid A.
Co-reporter:Joe R. Cannon, Michael B. Cammarata, Scott A. Robotham, Victoria C. Cotham, Jared B. Shaw, Ryan T. Fellers, Bryan P. Early, Paul M. Thomas, Neil L. Kelleher, and Jennifer S. Brodbelt
Analytical Chemistry 2014 Volume 86(Issue 4) pp:2185
Publication Date(Web):January 21, 2014
DOI:10.1021/ac403859a
Intact protein characterization using mass spectrometry thus far has been achieved at the cost of throughput. Presented here is the application of 193 nm ultraviolet photodissociation (UVPD) for top down identification and characterization of proteins in complex mixtures in an online fashion. Liquid chromatographic separation at the intact protein level coupled with fast UVPD and high-resolution detection resulted in confident identification of 46 unique sequences compared to 44 using HCD from prepared Escherichia coli ribosomes. Importantly, nearly all proteins identified in both the UVPD and optimized HCD analyses demonstrated a substantial increase in confidence in identification (as defined by an average decrease in E value of ∼40 orders of magnitude) due to the higher number of matched fragment ions. Also shown is the potential for high-throughput characterization of intact proteins via liquid chromatography (LC)–UVPD-MS of molecular weight-based fractions of a Saccharomyces cerevisiae lysate. In total, protein products from 215 genes were identified and found in 292 distinct proteoforms, 168 of which contained some type of post-translational modification.
Co-reporter:Michael Cammarata, Ke-Yi Lin, Jeff Pruet, Hung-wen Liu, and Jennifer Brodbelt
Analytical Chemistry 2014 Volume 86(Issue 5) pp:2534
Publication Date(Web):January 31, 2014
DOI:10.1021/ac4036235
Ultraviolet photodissocation (UVPD) mass spectrometry was used for high mass accuracy top-down characterization of two proteins labeled by the chemical probe, S-ethylacetimidate (SETA), in order to evaluate conformational changes as a function of denaturation. The SETA labeling/UVPD-MS methodology was used to monitor the mild denaturation of horse heart myoglobin by acetonitrile, and the results showed good agreement with known acetonitrile and acid unfolding pathways of myoglobin. UVPD outperformed electron transfer dissociation (ETD) in terms of sequence coverage, allowing the SETA reactivity of greater number of lysine amines to be monitored and thus providing a more detailed map of myoglobin. This strategy was applied to the third zinc-finger binding domain, domain C, of PARP-1 (PARP-C), to evaluate the discrepancies between the NMR and crystal structures which reported monomer and dimer forms of the protein, respectively. The trends reflected from the reactivity of each lysine as a function of acetonitrile denaturation in the present study support that PARP-C exists as a monomer in solution with a close-packed C-terminal α helix. Additionally, those lysines for which the SETA reactivity increased under denaturing conditions were found to engage in tertiary polar contacts such as salt bridging and hydrogen bonding, providing evidence that the SETA/UVPD-MS approach offers a versatile means to probe the interactions responsible for conformational changes in proteins.
Co-reporter:Joe R. Cannon, Dustin D. Holden, and Jennifer S. Brodbelt
Analytical Chemistry 2014 Volume 86(Issue 21) pp:10970
Publication Date(Web):October 1, 2014
DOI:10.1021/ac5036082
We report a hybrid fragmentation method involving electron transfer dissociation (ETD) combined with ultraviolet photodissociation (UVPD) at 193 nm for analysis of intact proteins in an Orbitrap mass spectrometer. Integrating the two fragmentation methods resulted in an increase in the number of identified c- and z-type ions observed when compared to UVPD or ETD alone, as well as generating a more balanced distribution of a/x, b/y, and c/z ion types. Additionally, the method was shown to decrease spectral congestion via fragmentation of multiple (charge-reduced) precursors. This hybrid activation method was facilitated by performing both ETD and UVPD within the higher energy collisional dissociation (HCD) cell of the Orbitrap mass spectrometer, which afforded an increase in the total number of fragment ions in comparison to the analogous MS3 format in which ETD and UVPD were undertaken in separate segments of the mass spectrometer. The feasibility of the hybrid method for characterization of proteins on a liquid chromatography timescale characterization was demonstrated for intact ribosomal proteins.
Co-reporter:Sylvester M. Greer, Joe R. Cannon, and Jennifer S. Brodbelt
Analytical Chemistry 2014 Volume 86(Issue 24) pp:12285
Publication Date(Web):November 24, 2014
DOI:10.1021/ac5035314
Although acidic peptides compose a substantial portion of many proteomes, their less efficient ionization during positive polarity electrospray ionization (ESI) impedes their detection in bottom-up mass spectrometry workflows. We have implemented a derivatization strategy based on carbamylation which converts basic amine sites (Lys, N-termini) to less basic amides for enhanced analysis in the negative mode. Ultraviolet photodissociation (UVPD) is used to analyze the resulting peptide anions, as demonstrated for tryptic peptides from bovine serum albumin and Halobacterium salinarum in a high throughput liquid chromatography/tandem mass spectrometry (LC/MS/MS) mode. LC/UVPD-MS of a carbamylated H. salinarum digest resulted in 45% more identified peptides and 25% more proteins compared to the unmodified digest analyzed in the negative mode.
Co-reporter:Michelle R. Robinson;Kevin L. Moore
Journal of The American Society for Mass Spectrometry 2014 Volume 25( Issue 8) pp:1461-1471
Publication Date(Web):2014 August
DOI:10.1007/s13361-014-0910-3
Sulfation is a common post-translational modification of tyrosine residues in eukaryotes; however, detection using traditional liquid chromatography-mass spectrometry (LC-MS) methods is challenging based on poor ionization efficiency in the positive ion mode and facile neutral loss upon collisional activation. In the present study, 193 nm ultraviolet photodissociation (UVPD) is applied to sulfopeptide anions to generate diagnostic sequence ions, which do not undergo appreciable neutral loss of sulfate even using higher energy photoirradiation parameters. At the same time, neutral loss of SO3 is observed from the precursor and charge-reduced precursor ions, a spectral feature that is useful for differentiating tyrosine sulfation from the nominally isobaric tyrosine phosphorylation. LC-MS detection limits for UVPD analysis in the negative mode were determined to be around 100 fmol for three sulfated peptides, caerulein, cionin, and leu-enkephalin. The LC-UVPD-MS method was applied for analysis of bovine fibrinogen, and its key sulfated peptide was confidently identified.
Co-reporter:Jared B. Shaw ; Wenzong Li ; Dustin D. Holden ; Yan Zhang ; Jens Griep-Raming ; Ryan T. Fellers ; Bryan P. Early ; Paul M. Thomas ; Neil L. Kelleher
Journal of the American Chemical Society 2013 Volume 135(Issue 34) pp:12646-12651
Publication Date(Web):May 22, 2013
DOI:10.1021/ja4029654
The top-down approach to proteomics offers compelling advantages due to the potential to provide complete characterization of protein sequence and post-translational modifications. Here we describe the implementation of 193 nm ultraviolet photodissociation (UVPD) in an Orbitrap mass spectrometer for characterization of intact proteins. Near-complete fragmentation of proteins up to 29 kDa is achieved with UVPD including the unambiguous localization of a single residue mutation and several protein modifications on Pin1 (Q13526), a protein implicated in the development of Alzheimer’s disease and in cancer pathogenesis. The 5 ns, high-energy activation afforded by UVPD exhibits far less precursor ion-charge state dependence than conventional collision- and electron-based dissociation methods.
Co-reporter:John P. O’Brien, Jeff M. Pruet, and Jennifer S. Brodbelt
Analytical Chemistry 2013 Volume 85(Issue 15) pp:7391
Publication Date(Web):July 15, 2013
DOI:10.1021/ac401305f
A chemical probe/ultraviolet photodissociation (UVPD) mass spectrometry strategy for evaluating structures of proteins and protein complexes is reported, as demonstrated for lysozyme and beta-lactoglobulin with and without bound ligands. The chemical probe, NN, incorporates a UV chromophore that endows peptides with high cross sections at 351 nm, a wavelength not absorbed by unmodified peptides. Thus, NN-modified peptides can readily be differentiated from nonmodified peptides in complex tryptic digests created upon proteolysis of proteins after their exposure to the NN chemical probe. The NN chemical probe also affords two diagnostic reporter ions detected upon UVPD of the NN-modified peptide that provides a facile method for the identification of NN peptides within complex mixtures. Quantitation of the modified and unmodified peptides allows estimation of the surface accessibilities of lysine residues based on their relative reactivities with the NN chemical probe.
Co-reporter:James A. Madsen, Byoung Joon Ko, Hua Xu, Jeremy A. Iwashkiw, Scott A. Robotham, Jared B. Shaw, Mario F. Feldman, and Jennifer S. Brodbelt
Analytical Chemistry 2013 Volume 85(Issue 19) pp:9253
Publication Date(Web):September 5, 2013
DOI:10.1021/ac4021177
O-Glycopeptides are often acidic owing to the frequent occurrence of acidic saccharides in the glycan, rendering traditional proteomic workflows that rely on positive mode tandem mass spectrometry (MS/MS) less effective. In this report, we demonstrate the utility of negative mode ultraviolet photodissociation (UVPD) MS for the characterization of acidic O-linked glycopeptide anions. This method was evaluated for a series of singly and multiply deprotonated glycopeptides from the model glycoprotein kappa casein, resulting in production of both peptide and glycan product ions that afforded 100% sequence coverage of the peptide and glycan moieties from a single MS/MS event. The most abundant and frequent peptide sequence ions were a/x-type products which, importantly, were found to retain the labile glycan modifications. The glycan-specific ions mainly arose from glycosidic bond cleavages (B, Y, C, and Z ions) in addition to some less common cross-ring cleavages. On the basis of the UVPD fragmentation patterns, an automated database searching strategy (based on the MassMatrix algorithm) was designed that is specific for the analysis of glycopeptide anions by UVPD. This algorithm was used to identify glycopeptides from mixtures of glycosylated and nonglycosylated peptides, sequence both glycan and peptide moieties simultaneously, and pinpoint the correct site(s) of glycosylation. This methodology was applied to uncover novel site-specificity of the O-linked glycosylated OmpA/MotB from the “superbug” A. baumannii to help aid in the elucidation of the functional role that protein glycosylation plays in pathogenesis.
Co-reporter:Scott A. Robotham, Christien Kluwe, Joe R. Cannon, Andrew Ellington, and Jennifer S. Brodbelt
Analytical Chemistry 2013 Volume 85(Issue 20) pp:9832
Publication Date(Web):September 19, 2013
DOI:10.1021/ac402309h
Although in silico database search methods remain more popular for shotgun proteomics methods, de novo sequencing offers the ability to identify peptides derived from proteins lacking sequenced genomes and ones with subtle splice variants or truncations. Ultraviolet photodissociation (UVPD) of peptides derivatized by selective attachment of a chromophore at the N-terminus generates a characteristic series of y ions. The UVPD spectra of the chromophore-labeled peptides are simplified and thus amenable to de novo sequencing. This method resulted in an observed sequence coverage of 79% for cytochrome C (eight peptides), 47% for β-lactoglobulin (five peptides), 25% for carbonic anhydrase (six peptides), and 51% for bovine serum albumin (33 peptides). This strategy also allowed differentiation of proteins with high sequence homology as evidenced by de novo sequencing of two variants of green fluorescent protein.
Co-reporter:John P. O’Brien and Jennifer S. Brodbelt
Analytical Chemistry 2013 Volume 85(Issue 21) pp:10399
Publication Date(Web):October 1, 2013
DOI:10.1021/ac402379y
Ultraviolet photodissociation (UVPD) mass spectrometry was used to characterize the structures of amphiphilic glycosphingolipids and gangliosides in comparison to collision induced dissociation (CID) and higher energy collision dissociation (HCD) in a high performance Orbitrap mass spectrometer. UVPD produced the widest array of fragment ions diagnostic for both the ceramide base and oligosaccharide moieties. CID and HCD generated mainly glycosidic B/Y and C/Z cleavages of the oligosaccharides moieties and very few informative fragments related to the hydrophobic ceramide base. Several unique cleavages at the sphingoid base and the fatty acid chain occurred upon UVPD, as well as a wider variety of cross ring cleavages (A/X ions), thus affording differentiation of isobaric gangliosides. An LC-UVPD-MS strategy allowed the elucidation of 27 gangliosides among five different classes.
Co-reporter:Jared B. Shaw and Jennifer S. Brodbelt
Analytical Chemistry 2013 Volume 85(Issue 17) pp:8313
Publication Date(Web):August 3, 2013
DOI:10.1021/ac401634b
The routine analysis of large biomolecules (greater than 30 kDa) has been a challenge for Orbitrap mass spectrometers due to the relatively high kinetic energy of ions entering and within the Orbitrap mass analyzer. This characteristic results in rapid signal decay for large biomolecules due to energetic collisions with background gas molecules. Here, we report a method to significantly enhance the analysis of large biomolecules in an Orbitrap mass spectrometer. The combination of reduced C-trap and higher energy collisional dissociation (HCD) cell bath gas pressures, using helium as the bath gas and trapping ions in the HCD cell prior to mass analysis, greatly increased sensitivity and reduced signal decay for large protein ions. As a result, isotopic resolution of monoclonal immunoglobulin G was achieved, and we have established a new high-mass record for which accurate mass measurement and isotopic resolution have been achieved.
Co-reporter:Victoria C. Cotham, Yariv Wine, and Jennifer S. Brodbelt
Analytical Chemistry 2013 Volume 85(Issue 11) pp:5577
Publication Date(Web):May 3, 2013
DOI:10.1021/ac400851x
Despite tremendous inroads in the development of more sensitive liquid chromatography–tandem mass spectrometry (LC–MS/MS) strategies for mass spectrometry-based proteomics, there remains a significant need for enhancing the selectivity of MS/MS-based workflows for streamlined analysis of complex biological mixtures. Here, a novel LC–MS/MS platform based on 351 nm ultraviolet photodissociation (UVPD) is presented for the selective analysis of cysteine–peptide subsets in complex protein digests. Cysteine-selective UVPD is mediated through the site-specific conjugation of reduced cysteine residues with a 351 nm active chromogenic Alexa Fluor 350 (AF350) maleimide tag. Only peptides containing the AF350 chromophore undergo photodissociation into extensive arrays of b- and y-type fragment ions, thus providing a facile means for differentiating cysteine–peptide targets from convoluting peptide backgrounds. With the use of this approach in addition to strategic proteolysis, the selective analysis of diagnostic heavy-chain complementarity determining regions (CDRs) of single-chain antibody (scAb) fragments is demonstrated.
Co-reporter:Scott A. Robotham and Jennifer S. Brodbelt
Journal of Agricultural and Food Chemistry 2013 Volume 61(Issue 7) pp:1457-1463
Publication Date(Web):January 30, 2013
DOI:10.1021/jf304853j
Flavone glucuronide isomers of five flavones (chrysin, apigenin, luteolin, baicalein, and scutellarein) were differentiated by collision-induced dissociation of [Co(II) (flavone-H) (4,7-diphenyl-1,10-phenanthroline)2]+ complexes. The complexes were generated via postcolumn addition of a metal–ligand solution after separation of the glucuronide products generated upon incubation of each flavone with an array of uridine 5′-diphosphate (UDP)–glucuronosyltransferase (UGT) isozymes. Elucidation of the glucuronide isomers allowed a systematic investigation of the regioselectivity of 12 human UGT isozymes, including 8 UGT1A and 4 UGT2B isozymes. Glucuronidation of the 7-OH position was the preferred site for all the flavones except for luteolin, which possessed adjacent hydroxyl groups on the B ring. For all flavones and UGT isozymes, glucuronidation of the 5-OH position was never observed. As confirmed by the metal complexation/MS/MS strategy, glucuronidation of the 6-OH position only occurred for baicalein and scutellarein when incubated with three of the UGT isozymes.
Co-reporter:Zhe Xu;Jared B. Shaw
Journal of The American Society for Mass Spectrometry 2013 Volume 24( Issue 2) pp:265-273
Publication Date(Web):2013 February
DOI:10.1007/s13361-012-0532-6
The development of activation/dissociation techniques such as ultraviolet photodissociation (UVPD), infrared multiphoton dissociation (IRMPD), and electron transfer dissociation (ETD) as alternatives to collision induced dissociation (CID) has extended the range of strategies for characterizing biologically relevant molecules. Here, we describe a comprehensive comparison of CID, IRMPD, UVPD, ETD, and hybrid processes termed ETcaD and ET-IRMPD (and analogous hybrid methods in the negative mode NETcaD and NET-IRMPD) for generating sequence-specific fragment ions and allowing adduction sites to be pinpointed for DNA/cisplatin adducts. Among the six MS/MS methods, the numerous products generated by the IRMPD and UVPD techniques resulted in the most specific and extensive backbone cleavages. We conclude that IRMPD and UVPD methods generally offer the best characteristics for pinpointing the cisplatin adduction sites in the fragment-rich spectra.
Co-reporter:Jenny Brodbelt
Journal of The American Society for Mass Spectrometry 2013 Volume 24( Issue 11) pp:1621-1622
Publication Date(Web):2013 November
DOI:10.1007/s13361-013-0741-7
Co-reporter:Jared B. Shaw ; Aaron R. Ledvina ; Xing Zhang ; Ryan R. Julian
Journal of the American Chemical Society 2012 Volume 134(Issue 38) pp:15624-15627
Publication Date(Web):September 12, 2012
DOI:10.1021/ja3032086
Tyrosine deprotonation in peptides yields preferential electron detachment upon NETD or UVPD, resulting in prominent N–Cα bond cleavage N-terminal to the tyrosine residue. UVPD of iodo-tyrosine-modified peptides was used to generate localized radicals on neutral tyrosine side chains by homolytic cleavage of the C–I bond. Subsequent collisional activation of the radical species yielded the same preferential cleavage of the adjacent N-terminal N–Cα bond. LC-MS/MS analysis of a tryptic digest of BSA demonstrated that these cleavages are regularly observed for peptides when using high-pH mobile phases.
Co-reporter:Jared B. Shaw;James A. Madsen;Hua Xu
Journal of The American Society for Mass Spectrometry 2012 Volume 23( Issue 10) pp:1707-1715
Publication Date(Web):2012 October
DOI:10.1007/s13361-012-0424-9
Ultraviolet photodissociation at 193 nm (UVPD) and negative electron transfer dissociation (NETD) were compared to establish their utility for characterizing acidic proteomes with respect to sequence coverage distributions (a measure of product ion signals across the peptide backbone), sequence coverage percentages, backbone cleavage preferences, and fragmentation differences relative to precursor charge state. UVPD yielded significantly more diagnostic information compared with NETD for lower charge states (n ≤ 2), but both methods were comparable for higher charged species. While UVPD often generated a more heterogeneous array of sequence-specific products (b-, y-, c-, z-, Y-, d-, and w-type ions in addition to a- and x- type ions), NETD usually created simpler sets of a/x-type ions. LC-MS/UVPD and LC-MS/NETD analysis of protein digests utilizing high pH mobile phases coupled with automated database searching via modified versions of the MassMatrix algorithm was undertaken. UVPD generally outperformed NETD in stand-alone searches due to its ability to efficiently sequence both lower and higher charge states with rapid activation times. However, when combined with traditional positive mode CID, both methods yielded complementary information with significantly increased sequence coverage percentages and unique peptide identifications over that of just CID alone.
Co-reporter:Sarah E. Pierce, Lynn J. Guziec, Frank S. Guziec Jr. and Jennifer S. Brodbelt
Chemical Research in Toxicology 2010 Volume 23(Issue 6) pp:1097
Publication Date(Web):April 6, 2010
DOI:10.1021/tx1000738
DNA cross-linking was evaluated by liquid chromatography−tandem mass spectrometry to determine the relative cross-linking abilities of two aziridinylbenzoquinones. Reactivities of RH1 (2,5-diaziridinyl-3-[hydroxymethyl]-6-methyl-1,4-benzoquinone), a clinically studied antitumor cross-linking agent, and an analogue containing a phenyl group (2,5-diaziridinyl-3-[hydroxymethyl]-6-phenyl-1,4-benzoquinone, PhRH1) rather than a methyl group were compared. The bulky phenyl substituent was added to determine the impact of steric hindrance on the formation of cross-links within a double helical structure. Cross-links formed by RH1 and PhRH1 were observed at 5′-dGNC sites as well as 5′-dGAAC/dGTTC sites. RH1 was more effective at forming cross-links than PhRH1 for a variety of duplexes. Infrared multiphoton dissociation (IRMPD) and collision-induced dissociation results confirmed the presence and the location of the cross-links within the duplexes, and IRMPD was used to identify the dissociation pathways of the cross-linked duplexes.
Co-reporter:Michael Cammarata, Ross Thyer, Michael Lombardo, Amy Anderson, Dennis Wright, Andrew Ellington and Jennifer S. Brodbelt
Chemical Science (2010-Present) 2017 - vol. 8(Issue 5) pp:NaN4072-4072
Publication Date(Web):2017/03/28
DOI:10.1039/C6SC05235E
Pathogenic Escherichia coli, one of the primary causes of urinary tract infections, has shown significant resistance to the most popular antibiotic, trimethoprim (TMP), which inhibits dihydrofolate reductase (DHFR). The resistance is modulated by single point mutations of DHFR. The impact of two clinically relevant mutations, P21L and W30R, on the activity of DHFR was evaluated via measurement of Michaelis–Menten and inhibitory kinetics, and structural characterization was undertaken by native mass spectrometry with ultraviolet photodissociation (UVPD). Compared to WT-DHFR, both P21L and W30R mutants produced less stable complexes with TMP in the presence of co-factor NADPH as evidenced by the relative abundances of complexes observed in ESI mass spectra. Moreover, based on variations in the fragmentation patterns obtained by UVPD mass spectrometry of binary and ternary DHFR complexes, notable structural changes were localized to the substrate binding pocket for W30R and to the M20 loop region as well as the C-terminal portion containing the essential G–H functional loop for the P21L mutant. The results suggest that the mutations confer resistance through distinctive mechanisms. A novel propargyl-linked antifolate compound 1038 was shown to be a reasonably effective inhibitor of the P21L mutant.
Co-reporter:Michael B. Cammarata and Jennifer S. Brodbelt
Chemical Science (2010-Present) 2015 - vol. 6(Issue 2) pp:NaN1333-1333
Publication Date(Web):2014/11/26
DOI:10.1039/C4SC03200D
Ultraviolet photodissociation (UVPD) mass spectrometry is employed to investigate the structure of holo-myoglobin as well as its apo form transferred to the gas phase by native electrospray. UVPD provided insight into the stability of native structural elements of holo-myoglobin. The fragmentation yields from UVPD showed the greatest overall correlation with B-factors generated from the crystal structure of apo-myoglobin, particularly for the more disordered loop regions. Solvent accessibility measurements also showed some correlation with the UVPD fragmentation of holo-myoglobin. Comparison of UVPD of holo- and apo-myoglobin revealed similarities in fragmentation yields, particularly for the lower charge states (8 and 9+). Both holo- and apo-myoglobin exhibited low fragmentation yields for the AGH helical core, whereas regions known to interact with the heme show suppressed fragmentation for holo-myoglobin. The fragment yields from HCD showed the lowest correlation with B-factor values and rather reflected preferential charge-directed backbone cleavages.
Co-reporter:John P. O'Brien, Brittany D. Needham, Dusty B. Brown, M. Stephen Trent and Jennifer S. Brodbelt
Chemical Science (2010-Present) 2014 - vol. 5(Issue 11) pp:NaN4301-4301
Publication Date(Web):2014/07/04
DOI:10.1039/C4SC01034E
Re-modelling of lipopolysaccharides, which are the primary constituent of the outer cell membrane of Gram-negative bacteria, modulates pathogenesis and resistance to microbials. Reported herein is the characterization of intact Gram-negative bacterial lipooligosaccharides (LOS) via a new strategy utilizing online liquid chromatography (LC) coupled with ultraviolet photodissociation (UVPD) mass spectrometry. Compared to collision-based MS/MS methods, UVPD and UVPD/HCD promoted a greater array of cleavages within both the glycan and lipid moieties, including C–C, C–N, C–O cleavages in the acyl chains as well as glycosidic and cross-ring cleavages, thus providing the most far-reaching structural characterization of LOS. This LC-MS/MS strategy affords a robust analytical method to structurally characterize complex mixtures of bacterial endotoxins that maintains the integrity of the core oligosaccharide and lipid A domains of LOS, providing direct feedback about the cell envelope architectures and LOS modification strategies involved in resistance of the host innate immune defense.
Co-reporter:Lindsay J. Morrison, Wenrui Chai, Jake A. Rosenberg, Graeme Henkelman and Jennifer S Brodbelt
Physical Chemistry Chemical Physics 2017 - vol. 19(Issue 30) pp:NaN20074-20074
Publication Date(Web):2017/07/11
DOI:10.1039/C7CP04073C
Determination of structure and folding of certain classes of proteins remains intractable by conventional structural characterization strategies and has spurred the development of alternative methodologies. Mass spectrometry-based approaches have a unique capacity to differentiate protein heterogeneity due to the ability to discriminate populations, whether minor or major, featuring modifications or complexation with non-covalent ligands on the basis of m/z. Cleavage of the peptide backbone can be further utilized to obtain residue-specific structural information. Here, hydrogen elimination monitoring (HEM) upon ultraviolet photodissociation (UVPD) of proteins transferred to the gas phase via nativespray ionization is introduced as an innovative approach to deduce backbone hydrogen bonding patterns. Using well-characterized peptides and a series of proteins, prediction of the engagement of the amide carbonyl oxygen of the protein backbone in hydrogen bonding using UVPD-HEM is demonstrated to show significant agreement with the hydrogen-bonding motifs derived from molecular dynamics simulations and X-ray crystal structures.