JM. Brasholz

Find an error

Name:
Organization: University of Hamburg , Germany
Department:
Title: (PhD)

TOPICS

Co-reporter: Dr. Malte Brasholz
Angewandte Chemie 2017 Volume 129(Issue 35) pp:10414-10415
Publication Date(Web):2017/08/21
DOI:10.1002/ange.201704763
Weniger ist mehr: Aktuelle Entwicklungen in der Photokatalyse machen zunehmend negative Reduktionspotentiale synthetisch nutzbar. Feinabgestimmte Energie- und Elektronentransfers mit polycyclischen aromatischen Kohlenwasserstoffen ermöglichen die katalytische Bildung von stark reduzierenden Aren-Radikalanionen, klassischen Ein-Elektronen-Reduktionsmitteln der organischen Synthese.
Co-reporter:Dirk Alpers;Malte Brasholz;Julia Rehbein
European Journal of Organic Chemistry 2017 Volume 2017(Issue 15) pp:2186-2193
Publication Date(Web):2017/04/18
DOI:10.1002/ejoc.201700150
The investigation of photoredox-induced intra- and intermolecular radical [4+2] annulations of indoles confronted us with a puzzling dichotomous behavior of structurally closely related intermediate 3-indolyl radicals, which either undergo exclusive oxidation to tricyclic tetrahydropyridoindoles or reduction to benzindolizidine products under identical reaction conditions. A combined experimental and computational study revealed that only very subtle structural changes in the substrate–reactant complexes of the key radical intermediates with amine radical cations steer the divergent product selectivities, instead of the usual reactivity parameters such as ionization potentials or partial charges.
Co-reporter: Dr. Malte Brasholz
Angewandte Chemie International Edition 2017 Volume 56(Issue 35) pp:10280-10281
Publication Date(Web):2017/08/21
DOI:10.1002/anie.201704763
Donation welcome: Recent developments in visible-light photocatalysis allow the utilization of increasingly negative reduction potentials. Successive energy and electron transfer with polycyclic aromatic hydrocarbons enables the catalytic formation of strongly reducing arene radical anions, classical stoichiometric reagents for one-electron reduction in organic synthesis.
Co-reporter:Eva Schendera;Stephanie Lerch;Thorsten von Drathen;Lisa-Natascha Unkel;Malte Brasholz
European Journal of Organic Chemistry 2017 Volume 2017(Issue 22) pp:3114-3114
Publication Date(Web):2017/06/16
DOI:10.1002/ejoc.201700718
The cover picture shows the phosphoric acid catalyzed, highly regioselective 1,2-rearrangement of readily available 3-hydroxyindolenines into 2-oxindoles. Controlling the product selectivity of such rearrangements is often challenging when using conventional Brønsted and Lewis acid promoters, but phosphoric acid organocatalysts stabilize the key reaction intermediates through an efficient dual activation mode, leading to predictable results in many cases. The method is highly useful for the synthesis of spirooxindole alkaloids. Details are discussed in the Communication by M. Brasholz et al. on page 3134 ff (https://doi.org/10.1002/ejoc.201700085).
Co-reporter:Eva Schendera;Stephanie Lerch;Thorsten von Drathen;Lisa-Natascha Unkel;Malte Brasholz
European Journal of Organic Chemistry 2017 Volume 2017(Issue 22) pp:3134-3138
Publication Date(Web):2017/06/16
DOI:10.1002/ejoc.201700085
A common synthetic route to indoxyl and 2-oxindole alkaloids utilizes the oxidation of indoles to 3-hydroxyindolenines, followed by acid-mediated 1,2-rearrangement. However, controlling the regioselectivity is often challenging and there is an ongoing need for new reaction conditions allowing to steer product selectivity. We report herein that phosphoric acids are ideal organocatalysts for the highly regioselective 1,2-rearrangement of 3-hydroxyindolenines to 2-oxindoles, with predictable product selectivity arising from an efficient dual activation mode.
Co-reporter:Dirk Alpers, Malte Gallhof, Christian B. W. Stark and Malte Brasholz  
Chemical Communications 2016 vol. 52(Issue 5) pp:1025-1028
Publication Date(Web):19 Nov 2015
DOI:10.1039/C5CC08994H
Common photoredox catalysts Ru(bpy)32+ and Ru(bpz)32+ are rapidly converted into Ruthenium(VIII)-oxide through continuous visible light irradiation in the presence of NaIO4 or H5IO6. This hitherto unreported photoassisted catalyst oxidation was utilized in the development of tandem catalytic protocols which combine a photoredox reaction with a subsequent RuO4-mediated oxidation. The new concept was demonstrated through one-pot radical cation Diels–Alder (RCDA)/1,5-diene cyclisation sequences.
Co-reporter:Sra Mühmel;Dirk Alpers;Dr. Frank Hoffmann;Dr. Malte Brasholz
Chemistry - A European Journal 2015 Volume 21( Issue 35) pp:12308-12312
Publication Date(Web):
DOI:10.1002/chem.201502572

Abstract

A photocatalytic dearomatizative tandem [4+2] cyclization between N-(2-iodoethyl)indoles and a variety of alkenes leads to tri- and tetracyclic benzindolizidines with high diastereoselectivity and yield. The intermolecular annulation reaction is performed under visible-light irradiation and employs [Ir(ppy)3] or [Ir(dtbbpy)(ppy)2] PF6 as photocatalysts, in combination with tertiary amines as electron and hydrogen atom donors.

Co-reporter:Fabian Rusch;Lisa-Natascha Unkel;Dirk Alpers;Dr. Frank Hoffmann;Dr. Malte Brasholz
Chemistry - A European Journal 2015 Volume 21( Issue 23) pp:
Publication Date(Web):
DOI:10.1002/chem.201582361
Co-reporter:Fabian Rusch;Lisa-Natascha Unkel;Dirk Alpers;Dr. Frank Hoffmann;Dr. Malte Brasholz
Chemistry - A European Journal 2015 Volume 21( Issue 23) pp:8336-8340
Publication Date(Web):
DOI:10.1002/chem.201500612

Abstract

A visible light-induced photocatalytic dehydrogenation/6π-cyclization/oxidation cascade converts 1-(nitromethyl)-2-aryl-1,2,3,4-tetrahydroisoquinolines into novel 12-nitro-substituted tetracyclic indolo[2,1-a]isoquinoline derivatives. Various photocatalysts promote the reaction in the presence of air and a base, the most efficient being 1-aminoanthraquinone in combination with K3PO4. Further, the 12-nitroindoloisoquinoline products can be accessed directly from C1-unfunctionalized 2-aryl-1,2,3,4-tetrahydroisoquinolines by extending the one-pot protocol with a foregoing photocatalytic cross-dehydrogenative coupling reaction, resulting in a quadruple cascade transformation.

Co-reporter:Dipl.-Chem. Stephanie Lerch;B.Sc. Lisa-Natascha Unkel ;Juniorprof.Dr. Malte Brasholz
Angewandte Chemie 2014 Volume 126( Issue 25) pp:6676-6680
Publication Date(Web):
DOI:10.1002/ange.201402920

Abstract

Wegen ihrer orthogonalen Reaktivitäten im Grund- und angeregten Zustand sind Chinone interessante Organokatalysatoren für die Entwicklung sequenzieller katalytischer Verfahren. Die Entdeckung einer thermischen Chinon-katalysierten C3-Alkylierung von Indolen mit Benzylaminen wird beschrieben, die sequenziell mit einer neuen, durch sichtbares Licht induzierten Photooxidation/1,2-Umlagerung kombiniert wurde. Das Eintopf-Tandemverfahren setzt Indole zu 3-Benzylindolen um, die darauf zu neuen fluoreszierenden 2,2-disubstituierten Indolin-3-onen transformiert werden.

Co-reporter:Dipl.-Chem. Stephanie Lerch;B.Sc. Lisa-Natascha Unkel ;Juniorprof.Dr. Malte Brasholz
Angewandte Chemie International Edition 2014 Volume 53( Issue 25) pp:6558-6562
Publication Date(Web):
DOI:10.1002/anie.201402920

Abstract

Quinones exhibit orthogonal ground- and excited-state reactivities and are therefore highly suitable organocatalysts for the development of sequential catalytic processes. Herein, the discovery of an anthraquinone-catalyzed thermal indole-C3-alkylation with benzylamines is described, which can be combined sequentially with a new visible-light-driven catalytic photooxidation/1,2-shift reaction. The one-flask tandem process converts indoles into 3-benzylindole intermediates, which are further transformed into new fluorescent 2,2-disubstituted indoline-3-one derivatives.

Co-reporter:Dirk Alpers, Malte Gallhof, Christian B. W. Stark and Malte Brasholz
Chemical Communications 2016 - vol. 52(Issue 5) pp:NaN1028-1028
Publication Date(Web):2015/11/19
DOI:10.1039/C5CC08994H
Common photoredox catalysts Ru(bpy)32+ and Ru(bpz)32+ are rapidly converted into Ruthenium(VIII)-oxide through continuous visible light irradiation in the presence of NaIO4 or H5IO6. This hitherto unreported photoassisted catalyst oxidation was utilized in the development of tandem catalytic protocols which combine a photoredox reaction with a subsequent RuO4-mediated oxidation. The new concept was demonstrated through one-pot radical cation Diels–Alder (RCDA)/1,5-diene cyclisation sequences.
1H-Indole, 1-(4-chlorobenzoyl)-2,5-dimethyl-3-(phenylmethyl)-
Ethanone, 1-[1-(2-chloroethyl)-1H-indol-3-yl]-
1-(2-chloroethyl)-3-methyl-1H-Indole
1H-Indole-3-carboxylic acid, 1-(2-iodoethyl)-, methyl ester
Benzene, [(1Z)-1-iodo-2-nitroethenyl]-
3-BENZYL-5-METHOXY-1H-INDOLE