Johan Hofkens

Find an error

Name:
Organization: Katholieke Universiteit Leuven , Belgium
Department: Department of Chemistry
Title: (PhD)
Co-reporter:M. Angeles Izquierdo, Toby D.M. Bell, Satoshi Habuchi, Eduard Fron, Roberto Pilot, Tom Vosch, Steven De Feyter, Jan Verhoeven, Josemon Jacob, Klaus Müllen, Johan Hofkens, Frans C. De Schryver
Chemical Physics Letters 2005 Volume 401(4–6) pp:503-508
Publication Date(Web):11 January 2005
DOI:10.1016/j.cplett.2004.09.156

Abstract

A novel perylene imide and oligo-pentaphenyl bisfluorene containing molecule is shown to undergo electron transfer to form an emissive charge transfer state in di-benzyl ether and THF. At the single molecule level in a PMMA film, fluorescence spectra characteristic of both emissive states (locally excited and charge transfer) are observed with 44% of the molecules studied showing switching between the two states. These results demonstrate that charge transfer fluorescence from single molecules can be used to report on the properties and dynamics of a molecule’s immediate surroundings or nano-environment.

Co-reporter:Kelly Velonia Dr.;Ophir Flomenbom;Davey Loos;Sadahiro Masuo;Mircea Cotlet Dr.;Yves Engelborghs Dr. Dr.;Alan E. Rowan Dr.;Joseph Klafter Dr.;Roel J. M. Nolte Dr. and;Frans C. de Schryver Dr.
Angewandte Chemie 2005 Volume 117(Issue 4) pp:
Publication Date(Web):23 DEC 2004
DOI:10.1002/ange.200460625

Echtzeitmessungen zur Katalyse- und Substratkinetik einer Hydrolyse durch ein einzelnes Enzymmolekül werden mithilfe von konfokaler Fluoreszenzmikroskopie (CFM) möglich (siehe Bild, CFM-Strahl=grün). Eine einzige Lipase kann eine Vielzahl von Konformationen einnehmen, die alle zur Gesamtaktivität des Enzyms beitragen. Dieser Sachverhalt wird bei Messungen an Ensembles häufig übersehen.

Co-reporter:Kelly Velonia Dr.;Ophir Flomenbom;Davey Loos;Sadahiro Masuo;Mircea Cotlet Dr.;Yves Engelborghs Dr. Dr.;Alan E. Rowan Dr.;Joseph Klafter Dr.;Roel J. M. Nolte Dr. and;Frans C. de Schryver Dr.
Angewandte Chemie 2005 Volume 117(Issue 4) pp:
Publication Date(Web):11 JAN 2005
DOI:10.1002/ange.200590009
Co-reporter:Kelly Velonia Dr.;Ophir Flomenbom;Davey Loos;Sadahiro Masuo;Mircea Cotlet Dr.;Yves Engelborghs Dr. Dr.;Alan E. Rowan Dr.;Joseph Klafter Dr.;Roel J. M. Nolte Dr. and;Frans C. de Schryver Dr.
Angewandte Chemie International Edition 2005 Volume 44(Issue 4) pp:
Publication Date(Web):11 JAN 2005
DOI:10.1002/anie.200590009
Co-reporter:Kelly Velonia Dr.;Ophir Flomenbom;Davey Loos;Sadahiro Masuo;Mircea Cotlet Dr.;Yves Engelborghs Dr. Dr.;Alan E. Rowan Dr.;Joseph Klafter Dr.;Roel J. M. Nolte Dr. and;Frans C. de Schryver Dr.
Angewandte Chemie International Edition 2005 Volume 44(Issue 4) pp:
Publication Date(Web):23 DEC 2004
DOI:10.1002/anie.200460625

Real-time measurement of the catalysis and substrate kinetics of a single-enzyme hydrolysis reaction is demonstrated with confocal fluorescence microscopy (CFM; see picture, green=CFM beam). A single lipase is shown to have a broad range of conformations; each conformation contributes to the overall enzymatic activity, an observation that is often masked by ensemble measurements.

Co-reporter:Kelly Velonia;Mircea Cotlet;Alan E. Rowan;Ophir Flomenbom;Frans C. de Schryver;Mark Van der Auweraer;Davey Loos;Yves Engelborghs;Sadahiro Masuo;Joseph Klafter;Roeland J. M. Nolte
PNAS 2005 Volume 102 (Issue 7 ) pp:2368-2372
Publication Date(Web):2005-02-15
DOI:10.1073/pnas.0409039102
Single-molecule techniques offer a unique tool for studying the dynamical behavior of individual molecules and provide the possibility to construct distributions from individual events rather than from a signal stemming from an ensemble of molecules. In biological systems, known for their complexity, these techniques make it possible to gain insights into the detailed spectrum of molecular conformational changes and activities. Here, we report on the direct observation of a single lipase-catalyzed reaction for extended periods of time (hours), by using confocal fluorescence microscopy. When adding a profluorescent substrate, the monitored enzymatic activity appears as a trajectory of “on-state” and “off-state” events. The waiting time probability density function of the off state and the state-correlation function fit stretched exponentials, independent of the substrate concentration in a certain range. The data analysis unravels oscillations in the logarithmic derivative of the off-state waiting time probability density function and correlations between off-state events. These findings imply that the fluctuating enzyme model, which involves a spectrum of enzymatic conformations that interconvert on the time scale of the catalytic activity, best describes the observed enzymatic activity. Based on this model, values for the coupling and reaction rates are extracted.
Co-reporter:Mircea Cotlet;Sadahiro Masuo;Marc Lor;Eduard Fron;Mark Van der Auweraer;Klaus Müllen;Frans De Schryver
Angewandte Chemie International Edition 2004 Volume 43(Issue 45) pp:
Publication Date(Web):17 NOV 2004
DOI:10.1002/anie.200460560

The dynamics of reversible photoinduced electron transfer in individual perylenediimide–triphenylamine-based donor–acceptor dendrimers immobilized in polystyrene were investigated by single-molecule spectroscopy. By changing the local concentration of oxygen, it was possible to influence the transition of the charge-separation state (CSS) either to the locally excited state (LES) or to the ground state (GS, see graphic).

Co-reporter:Mircea Cotlet;Sadahiro Masuo;Marc Lor;Eduard Fron;Mark Van der Auweraer;Klaus Müllen;Frans De Schryver
Angewandte Chemie 2004 Volume 116(Issue 45) pp:
Publication Date(Web):17 NOV 2004
DOI:10.1002/ange.200460560

Die Dynamik des photoinduzierten reversiblen Elektronentransfers in individuellen, in Polystyrol immobilisierten Perylendiimid-Triphenylamin-Donor-Acceptor-Dendrimeren wurde durch Einzelmolekülspektroskopie untersucht. Über die lokale Sauerstoffkonzentration lässt sich der Übergang des ladungsgetrennten Zustands (CSS) zum lokal angeregten Zustand (LES) oder zum Grundzustand (GS) steuern (siehe Bild).

Co-reporter:Kenneth D. Weston;Philip Tinnefeld;Tom Vosch;Mircea Cotlet;Jean Luc Brédas;Sven Jordens;David Beljonne;Christophe Ego;Klaus Müllen;Frans De Schryver;Markus Sauer;Andrew Grimsdale;Gerd Schweitzer
PNAS 2003 Volume 100 (Issue 23 ) pp:13146-13151
Publication Date(Web):2003-11-11
DOI:10.1073/pnas.2235805100
We demonstrate measurements of the efficiency of competing Förster-type energy-transfer pathways in single bichromophoric systems by monitoring simultaneously the fluorescence intensity, fluorescence lifetime, and the number of independent emitters with time. Peryleneimide end-capped fluorene trimers, hexamers, and polymers with interchromophore distances of 3.4, 5.9, and on average 42 nm, respectively, served as bichromophoric systems. Because of different energy-transfer efficiencies, variations in the interchromophore distance enable the switching between homo-energy transfer (energy hopping), singlet-singlet annihilation, and singlet-triplet annihilation. The data suggest that similar energy-transfer pathways have to be considered in the analysis of single-molecule trajectories of donor/acceptor pairs as well as in natural and synthetic multichromophoric systems such as light-harvesting antennas, oligomeric fluorescent proteins, and dendrimers. Here we report selectively visualization of different energy-transfer pathways taking place between identical fluorophores in individual bichromophoric molecules.
Co-reporter:Fabian Köhn Dr. ;Roel Gronheid Dr.;Mircea Cotlet Dr.;Klaus Müllen ;Mark Van der Auweraer ;Frans C. De Schryver
ChemPhysChem 2002 Volume 3(Issue 12) pp:
Publication Date(Web):9 DEC 2002
DOI:10.1002/cphc.200290013

The cover picture shows two different guest chromophores in a dendritic host. In this system the thiacarbocyanine dye A can act as an energy donor for the thiadicarbocyanine dye B. This system has been studied at the ensemble as well as at the single-molecule level. Because of the many free parameters in the system the results at the ensemble level are too complex to analyze in detail. At the single-molecule level a wide variety of energy transfer efficiencies was observed. Moreover, single entities showed fluctuations of the energy transfer efficiency as a function of time. In the background of the cover picture a smoothed surface of a 3D histogram of donor decay time versus fluorescence intensity is plotted for a single entity. Clearly two domains of energy transfer efficiency are observed. The single-molecule results permit a more in-depth understanding of the photophysics of this complex system. Find out more in the article by Hofkens and De Schryver et al. on pages 1005–1013.

Co-reporter:Mircea Cotlet, Johan Hofkens, Fabian Köhn, Jan Michiels, Gunter Dirix, Maarten Van Guyse, Jos Vanderleyden, Frans C. De Schryver
Chemical Physics Letters 2001 Volume 336(5–6) pp:415-423
Publication Date(Web):23 March 2001
DOI:10.1016/S0009-2614(01)00165-8

Abstract

We report on single-molecule experiments that were performed on two biological systems, the recently cloned red fluorescent protein of a coral of the Discosoma genus (DsRed) and the enhanced green fluorescent protein, both of which were immobilized in polyvinylalcohol. Fluorescence intensity trajectories were recorded and compared to those of a reference compound, the organic dye hexaphenylbenzene perylenemonoimide. Evidence was found for the presence of DsRed as an oligomer even at subnanomolar concentrations. Both proteins show triplet blinking in the millisecond time range. Collective effects could be observed for the Dsred oligomers.

Co-reporter:Mircea Cotlet;Satoshi Habuchi;Maarten Van Guyse;Gunter Dirix;Jan Michiels;Jos Vanderleyden;Frans C. De Schryver
PNAS 2001 Volume 98 (Issue 25 ) pp:14398-14403
Publication Date(Web):2001-12-04
DOI:10.1073/pnas.251532698
The photophysics and photochemistry taking place in the DsRed protein, a recently cloned red fluorescent protein from a coral of the Discosoma genus, are investigated here by means of ensemble and single-molecule time-resolved detection and spectroscopic measurements. Ensemble time-resolved data reveal that 25% of the immature green chromophores are present in tetramers containing only this immature form. They are responsible for the weak fluorescence emitted at 500 nm. The remaining 75% of the immature green chromophores are involved in a fluorescence resonance energy transfer process to the red species. The combination of time-resolved detection with spectroscopy at the single-molecule level reveals, on 543-nm excitation of individual DsRed tetramers, the existence of a photoconversion of the red chromophore emitting at 583 nm and decaying with a 3.2-ns time constant into a super red one emitting at 595 nm and for which the decay time constant ranges between 2.7 and 1.5 ns. The phenomenon is further corroborated at the ensemble level by the observation of the creation of a super red form and a blue absorbing species on irradiation with 532-nm pulsed light at high excitation power. Furthermore, single-molecule experiments suggest that a similar photoconversion process might occur in the immature green species on 488-nm excitation.
Co-reporter:Johan Hofkens, Wouter Schroeyers, Davey Loos, Mircea Cotlet, Fabian Köhn, Tom Vosch, Michael Maus, A Herrmann, K Müllen, Thomas Gensch, F.C De Schryver
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2001 Volume 57(Issue 11) pp:2093-2107
Publication Date(Web):14 September 2001
DOI:10.1016/S1386-1425(01)00499-1
Energy transfer in antenna systems, ordered arrays of chromophores, is one of the key steps in the photosynthetic process. The photophysical processes taking place in such multichromophoric systems, even at the single molecule level, are complicated and not yet fully understood. Instead of directly studying individual antenna systems, we have chosen to focus first on systems for which the amount of chromophores and the interactions among the chromophores can be varied in a systematic way. Dendrimers with a controlled number of chromophores at the rim fulfill those requirements perfectly. A detailed photophysical study of a second-generation dendrimer, containing eight peryleneimide chromophores at the rim, was performed ‘J. Am. Chem. Soc., 122 (2000) 9278’. One of the most intriguing findings was the presence of collective on/off jumps in the fluorescence intensity traces of the dendrimers. This phenomenon can be explained by assuming a simultaneous presence of both a radiative trap (energetically lowest chromophoric site) and a non-radiative trap (triplet state of one chromophore) within one individual dendrimer. It was shown that an analogue scheme could explain the collective on/off jumps in the fluorescence intensity traces of the photosynthetic pigment B-phycoerythrin (B-PE) (Porphyridium cruentum). The different values of the triplet lifetime that could be recovered for a fluorescence intensity trace of B-PE were correlated with different intensity levels in the trace, suggesting different chromophores acting as a trap as function of time.
Co-reporter:Tom Vosch Dr.;Mircea Cotlet;Fabian Köhn;Hideki Fujiwara Dr.;Roel Gronheid;Koen Van Der Biest;Tanja Weil;Andreas Herrmann;Klaus Müllen Dr.;Shaul Mukamel Dr.;Mark Van der Auweraer Dr.;Frans C. De Schryver Dr.
Angewandte Chemie International Edition 2001 Volume 40(Issue 24) pp:
Publication Date(Web):18 DEC 2001
DOI:10.1002/1521-3773(20011217)40:24<4643::AID-ANIE4643>3.0.CO;2-N

Collective on/off behavior and different spectral behavior has been identified for individual molecules of different isomers (see for example the fluorescence spectra for two isomers as a function of time) with three perylenedicarboximide chromophores. In 8 % of the dendrimer molecules, the chromophores interact to form an excimer-like structure which possess a higher rate of intersystem crossing than the rest of the molecules. This is the first time that this phenomenon has been proven experimentally at the single-molecule level.

Co-reporter:Tom Vosch Dr.;Mircea Cotlet;Fabian Köhn;Hideki Fujiwara Dr.;Roel Gronheid;Koen Van Der Biest;Tanja Weil;Andreas Herrmann;Klaus Müllen Dr.;Shaul Mukamel Dr.;Mark Van der Auweraer Dr.;Frans C. De Schryver Dr.
Angewandte Chemie 2001 Volume 113(Issue 24) pp:
Publication Date(Web):18 DEC 2001
DOI:10.1002/1521-3757(20011217)113:24<4779::AID-ANGE4779>3.0.CO;2-O

Sowohl kollektives An-Aus-Verhalten als auch unterschiedliche spektrale Eigenschaften wurden für individuelle Moleküle verschiedener Isomere eines Dendrimers mit drei Perylendicarboximid-Chromophoren gefunden (siehe z. B. die zeitabhängigen Fluoreszenzspektren zweier Isomere). Bei 8 % der Dendrimermoleküle wechselwirken die Chromophore miteinander und bilden eine Excimer-artige Struktur, die schneller interkombiniert als die restlichen Moleküle. Dieses Phänomen konnte zum ersten Mal für ein Einzelmolekülsystem nachgewiesen werden.

Acetic acid, 2-azido-, 1,1-dimethylethyl ester
PROPANE-1,2,3-TRIOL;HYDRATE