Co-reporter:Yangxiong Li, Nathan P. Lavey, Jesse A. Coker, Jessica E. Knobbe, Dat C. Truong, Hongtao Yu, Yu-Shan Lin, Susan L. Nimmo, and Adam S. Duerfeldt
ACS Medicinal Chemistry Letters November 9, 2017 Volume 8(Issue 11) pp:1171-1171
Publication Date(Web):October 19, 2017
DOI:10.1021/acsmedchemlett.7b00320
The acyldepsipeptide (ADEP) antibiotics operate through a clinically unexploited mechanism of action and thus have attracted attention from several antibacterial development groups. The ADEP scaffold is synthetically tractable, and deep-seated modifications have produced extremely potent antibacterial leads against Gram-positive pathogens. Although newly identified ADEP analogs demonstrate remarkable antibacterial activity against bacterial isolates and in mouse models of bacterial infections, stability issues pertaining to the depsipeptide core remain. To date, no study has been reported on the natural ADEP scaffold that evaluates the sole importance of the macrocyclic linkage on target engagement, molecular conformation, and bioactivity. To address this gap in ADEP structure–activity relationships, we synthesized three ADEP analogs that only differ in the linkage motif (i.e., ester, amide, and N-methyl amide) and provide a side-by-side comparison of conformational behavior and biological activity. We demonstrate that while replacement of the naturally occurring ester linkage with a secondary amide maintains in vitro biochemical activity, this simple substitution results in a significant drop in whole-cell activity. This study provides direct evidence that ester to amide linkage substitution is unlikely to provide a reasonable solution for ADEP instability.Keywords: acyldepsipeptide; antibacterial; Caseinolytic protease P; depsipeptide substitution;
Co-reporter:Nathan P. Lavey; Jesse A. Coker; Eliza A. Ruben
Journal of Natural Products 2016 Volume 79(Issue 4) pp:1193-1197
Publication Date(Web):March 11, 2016
DOI:10.1021/acs.jnatprod.5b01091
Caseinolytic protease P (ClpP) maintains essential roles in bacterial homeostasis. As such, both the inhibition and activation of this enzyme result in bactericidal activity, making ClpP a promising target for antibacterial drug development. Herein, we report the results of a fluorescence-based screen of ∼450 structurally diverse fungal and bacterial secondary metabolites. Sclerotiamide (1), a paraherquamide-related indolinone, was identified as the first non-peptide-based natural product activator of ClpP. Structure-activity relationships arising from the initial screen, preliminary biochemical evaluation of 1, and rationale for the exploitation of this chemotype to develop novel ClpP activators are presented.