Polymer-based materials with high electrical conductivity are of considerable interest because of their wide range of applications. The construction of a 3D, compactly interconnected graphene network can offer a huge increase in the electrical conductivity of polymer composites. However, it is still a great challenge to achieve desirable 3D architectures in the polymer matrix. Here, highly conductive polymer nanocomposites with 3D compactly interconnected graphene networks are obtained using a self-assembly process. Polystyrene (PS) and ethylene vinyl acetate (EVA) are used as polymer matrixes. The obtained PS composite film with 4.8 vol% graphene shows a high electrical conductivity of 1083.3 S/m, which is superior to that of the graphene composite prepared by a solvent mixing method. The electrical conductivity of the composites is closely related to the compact contact between graphene sheets in the 3D structures and the high reduction level of graphene sheets. The obtained EVA composite films with the 3D graphene structure not only show high electrical conductivity but also exhibit high flexibility. Importantly, the method to fabricate 3D graphene structures in polymer matrix is facile, green, low-cost, and scalable, providing a universal route for the rational design and engineering of highly conductive polymer composites.
Trimethylolpropane trimethylacrylate/Ultra high molecular weight polyethylene (TMPTMA/UHMWPE) composite and pure UHMWPE plates were made by compression molding and electron beam (EB) irradiation crosslinking methods. Fourier transform infrared spectroscopy (FTIR), Soxhlet extractor, electromechanical tester, and wear tester were used for the characterization of the structure, mechanical properties, and tribological performance of the crosslinked UHMWPE. FTIR analyses show that trans-vinylene (965 cm−1) absorption increases with the increasing dose and the trans-vinylene intensity of TMPTMA/UHMWPE is higher than that of UHMWPE at the same dose, and Soxhlet experiments reveal that gel fraction increases with the increasing dose, both proving that crosslinking took place in all the irradiated samples. The results of the tensile tests indicate a significant decrease in elongation at break, but the stress of UHMWPE increases to 47 MPa at 10 kGy and then decreases with the increasing dose. The stress of TMPTMA/UHMWPE composites keeps at about 39 MPa before 50 kGy and then decreases with the increasing dose because of plasticization effect. The stress changes indicate that crosslinking and degradation occurred at the same time. Wear rate of 100 kGy 1% TMPTMA/UHMWPE is 1.76 × 10−7mg/Nm, only 23.5% of wear rate of 0 kGy UHMWPE and 44.2% of wear rate of 100 kGy UHMWPE. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013
Poly(ethylene-co-vinyl acetate)/intumescent flame retardant (ammonium polyphosphate/pentaerythritol/zinc borate system) composites-EVA/IFR (APP/PER/ZB system) and EVA/IFR/Synergist [CaCO3, natural graphite, or expanded graphite (EG)] composites have been prepared by melting compounding method. The flammability, the combustion process, the quantity of the residual chars, the morphology of the residual chars, and the thermal stability of the chars have been investigated by cone calorimeter, scanning electron microscopy and thermo gravimetric analysis. The results indicate that heat release rate (HRR), total heat released, and total smoke release (TSR) of EVA/IFR (IFR 30 phr) composite decrease to about 67.1, 78.2, and 64% of that of pure EVA, respectively. HRR, THR, and TSR of EVA/IFR/EG (IFR 9 phr, EG 1phr) composite decrease to about 62.1, 76.2, and 44% of that of pure EVA, respectively. The quantity, the thermal stability of residual chars and the char structure are discussed to find the reasons of the phenomenon above. It has been found that the flame retardant of EVA vulcanizates is improved and the fire jeopardizing is dramatically reduced due to the addition of IFR and synergist, which can give some advice to design formulations for practical applications as cable. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012