Ivaylo Ivanov

Find an error

Name: Ivanov, Ivaylo
Organization: Georgia State University , USA
Department: Department of Chemistry
Title: Assistant Professor(PhD)
Co-reporter:Xiaojun Xu, Chunli Yan, Bradley R. Kossmann, and Ivaylo Ivanov
The Journal of Physical Chemistry B 2016 Volume 120(Issue 33) pp:8379-8388
Publication Date(Web):April 24, 2016
DOI:10.1021/acs.jpcb.6b02082
Replicative DNA polymerases (Pols) frequently possess two distinct DNA processing activities: DNA synthesis (polymerization) and proofreading (3′–5′ exonuclease activity). The polymerase and exonuclease reactions are performed alternately and are spatially separated in different protein domains. Thus, the growing DNA primer terminus has to undergo dynamic conformational switching between two distinct functional sites on the polymerase. Furthermore, the transition from polymerization (pol) mode to exonuclease (exo) mode must occur in the context of a DNA Pol holoenzyme, wherein the polymerase is physically associated with processivity factor proliferating cell nuclear antigen (PCNA) and primer–template DNA. The mechanism of this conformational switching and the role that PCNA plays in it have remained obscure, largely due to the dynamic nature of ternary Pol/PCNA/DNA assemblies. Here, we present computational models of ternary assemblies for archaeal polymerase PolB. We have combined all available structural information for the binary complexes with electron microscopy data and have refined atomistic models for ternary PolB/PCNA/DNA assemblies in pol and exo modes using molecular dynamics simulations. In addition to the canonical PIP-box/interdomain connector loop (IDCL) interface of PolB with PCNA, contact analysis of the simulation trajectories revealed new secondary binding interfaces, distinct between the pol and exo states. Using targeted molecular dynamics, we explored the conformational transition from pol to exo mode. We identified a hinge region between the thumb and palm domains of PolB that is critical for conformational switching. With the thumb domain anchored onto the PCNA surface, the neighboring palm domain executed rotational motion around the hinge, bringing the core of PolB down toward PCNA to form a new interface with the clamp. A helix from PolB containing a patch of arginine residues was involved in the binding, locking the complex in the exo mode conformation. Together, these results provide a structural view of how the transition between the pol and exo states of PolB is coordinated through PCNA to achieve efficient proofreading.
Co-reporter:Bradley R. Kossmann, Monica Abdelmalak, Sophia Lopez, Gabrielle Tender, Chunli Yan, Yves Pommier, Christophe Marchand, Ivaylo Ivanov
Bioorganic & Medicinal Chemistry Letters 2016 26(14) pp: 3232-3236
Publication Date(Web):15 July 2016
DOI:10.1016/j.bmcl.2016.05.065
Tyrosyl-DNA phosphodiesterase 2 (TDP2) processes protein/DNA adducts resulting from abortive DNA topoisomerase II (Top2) activity. TDP2 inhibition could provide synergism with the Top2 poison class of chemotherapeutics. By virtual screening of the NCI diversity small molecule database, we identified selective TDP2 inhibitors and experimentally verified their selective inhibitory activity. Three inhibitors exhibited low-micromolar IC50 values. Molecular dynamics simulations revealed a common binding mode for these inhibitors, involving association to the TDP2 DNA-binding cleft. MM-PBSA per-residue energy decomposition identified important interactions of the compounds with specific TDP2 residues. These interactions could provide new avenues for synthetic optimization of these scaffolds.
Co-reporter:Leilei Yan ; Chunli Yan ; Kun Qian ; Hairui Su ; Stephanie A. Kofsky-Wofford ; Wei-Chao Lee ; Xinyang Zhao ; Meng-Chiao Ho ; Ivaylo Ivanov ;Yujun George Zheng
Journal of Medicinal Chemistry 2014 Volume 57(Issue 6) pp:2611-2622
Publication Date(Web):February 24, 2014
DOI:10.1021/jm401884z
Protein arginine methylation is a posttranslational modification critical for a variety of biological processes. Misregulation of protein arginine methyltransferases (PRMTs) has been linked to many pathological conditions. Most current PRMT inhibitors display limited specificity and selectivity, indiscriminately targeting many methyltransferase enzymes that use S-adenosyl-l-methionine as a cofactor. Here we report diamidine compounds for specific inhibition of PRMT1, the primary type I enzyme. Docking, molecular dynamics, and MM/PBSA analysis together with biochemical assays were conducted to understand the binding modes of these inhibitors and the molecular basis of selective inhibition for PRMT1. Our data suggest that 2,5-bis(4-amidinophenyl)furan (1, furamidine, DB75), one leading inhibitor, targets the enzyme active site and is primarily competitive with the substrate and noncompetitive toward the cofactor. Furthermore, cellular studies revealed that 1 is cell membrane permeable and effectively inhibits intracellular PRMT1 activity and blocks cell proliferation in leukemia cell lines with different genetic lesions.
Co-reporter:Jordi Querol-Audí;Chunli Yan;Xiaojun Xu;Susan E. Tsutakawa;Miaw-Sheue Tsai;John A. Tainer;Priscilla K. Cooper;Eva Nogales
PNAS 2012 Volume 109 (Issue 22 ) pp:8528-8533
Publication Date(Web):2012-05-29
DOI:10.1073/pnas.1121116109
Processivity clamps such as proliferating cell nuclear antigen (PCNA) and the checkpoint sliding clamp Rad9/Rad1/Hus1 (9-1-1) act as versatile scaffolds in the coordinated recruitment of proteins involved in DNA replication, cell-cycle control, and DNA repair. Association and handoff of DNA-editing enzymes, such as flap endonuclease 1 (FEN1), with sliding clamps are key processes in biology, which are incompletely understood from a mechanistic point of view. We have used an integrative computational and experimental approach to define the assemblies of FEN1 with double-flap DNA substrates and either proliferating cell nuclear antigen or the checkpoint sliding clamp 9-1-1. Fully atomistic models of these two ternary complexes were developed and refined through extensive molecular dynamics simulations to expose their conformational dynamics. Clustering analysis revealed the most dominant conformations accessible to the complexes. The cluster centroids were subsequently used in conjunction with single-particle electron microscopy data to obtain a 3D EM reconstruction of the human 9-1-1/FEN1/DNA assembly at 18-Å resolution. Comparing the structures of the complexes revealed key differences in the orientation and interactions of FEN1 and double-flap DNA with the two clamps that are consistent with their respective functions in providing inherent flexibility for lagging strand DNA replication or inherent stability for DNA repair.
Co-reporter:Susan E. Tsutakawa;Adam W. Van Wynsberghe;Bret D. Freudenthal;Christopher P. Weinacht;Lokesh Gakhar;M. Todd Washington;Zhihao Zhuang;John A. Tainer
PNAS 2011 108 (43 ) pp:
Publication Date(Web):2011-10-25
DOI:10.1073/pnas.1110480108
PCNA ubiquitination in response to DNA damage leads to the recruitment of specialized translesion polymerases to the damage locus. This constitutes one of the initial steps in translesion synthesis (TLS)—a critical pathway for cell survival and for maintenance of genome stability. The recent crystal structure of ubiquitinated PCNA (Ub–PCNA) sheds light on the mode of association between the two proteins but also revealed that paradoxically, the ubiquitin surface engaged in PCNA interactions was the same as the surface implicated in translesion polymerase binding. This finding implied a degree of flexibility inherent in the Ub–PCNA complex that would allow it to transition into a conformation competent to bind the TLS polymerase. To address the issue of segmental flexibility, we combined multiscale computational modeling and small angle X-ray scattering. This combined strategy revealed alternative positions for ubiquitin to reside on the surface of the PCNA homotrimer, distinct from the position identified in the crystal structure. Two mutations originally identified in genetic screens and known to interfere with TLS are positioned directly beneath the bound ubiquitin in the alternative models. These computationally derived positions, in an ensemble with the crystallographic and flexible positions, provided the best fit to the solution scattering, indicating that ubiquitin dynamically associated with PCNA and is capable of transitioning between a few discrete sites on the PCNA surface. The finding of new docking sites and the positional equilibrium of PCNA–Ub occurring in solution provide unexpected insight into previously unexplained biological observations.
Co-reporter:John A. Tainer ; J. Andrew McCammon
Journal of the American Chemical Society 2010 Volume 132(Issue 21) pp:7372-7378
Publication Date(Web):May 10, 2010
DOI:10.1021/ja100365x
Proliferating cell nuclear antigen (PCNA, sliding clamp) is a toroidal-shaped protein that encircles DNA and plays a pivotal role in DNA replication, modification and repair. To perform its vital functions, the clamp has to be opened and resealed at primer−template junctions by a clamp loader molecular machine, replication factor C (RFC). The mechanism of this process constitutes a significant piece in the puzzle of processive DNA replication. We show that upon clamp opening the RFC/PCNA complex undergoes a large conformational rearrangement, leading to the formation of an extended interface between the clamp and RFC. Binding of ring-open PCNA to all five RFC subunits transforms the free-energy landscape underlying the closed- to open state transition, trapping PCNA in an open conformation. Careful comparison of free-energy profiles for clamp opening in the presence and absence of RFC allowed us to substantiate the role of RFC in the initial stage of the clamp-loading cycle. RFC does not appreciably destabilize the closed state of PCNA. Instead, the function of the clamp loader is dependent on the selective stabilization of the open conformation of the clamp.
Avastin
2-[(2S,5R,8S,11S)-5-benzyl-11-[3-(diaminomethylideneamino)propyl]-7-methyl-3,6,9,12,15-pentaoxo-8-propan-2-yl-1,4,7,10,13-pentazacyclopentadec-2-yl]acetic acid
Caspase-9
Caspase-3