III Anthony Arduengo

Find an error

Name: Anthony Arduengo, III
Organization: University of Alabama , USA
Department:
Title: Professor(PhD)

TOPICS

Co-reporter:Jonas Kühlborn;Ann-Kathrin Danner;Holger Frey;Rishab Iyer;Anthony J. Arduengo, III;Till Opatz
Green Chemistry (1999-Present) 2017 vol. 19(Issue 16) pp:3780-3786
Publication Date(Web):2017/08/14
DOI:10.1039/C7GC01244F
Against the backdrop of modern sustainable chemistry and valorization of biomass for chemical raw materials, the syntheses of indigo dyes and polyamides as representatives of two classes of everyday chemical products based on xylochemicals are described. Wood-derived starting materials were transformed into functional materials using the principles of green chemistry to expand the scope of products gained from renewable resources. The indigo dyes were synthesized in a short, straightforward sequence starting from vanillin. Two polyamides, representatives of an important class of polymers, were obtained from 4-propylcyclohexanol, which is one of the longest known (and most abundant) hydrogenative depolymerization products of lignin.
Co-reporter:Daniel Stubba;Günther Lahm;Mario Geffe;Dr. Jason W. Runyon;Dr. Anthony J. Arduengo III;Dr. Till Opatz
Angewandte Chemie International Edition 2015 Volume 54( Issue 47) pp:14187-14189
Publication Date(Web):
DOI:10.1002/anie.201508500

Abstract

The first total synthesis of the dimeric berberine alkaloid ilicifoline (ilicifoline B) is reported. Its carbon skeleton is constructed from ferulic acid, veratrole, and methanol. The synthesis reported herein employs starting materials solely derived from wood. The natural product is thus constructed entirely from renewable resources. The same strategy is applied to a formal total synthesis of morphinan alkaloids. The use of wood-derived building blocks (xylochemicals) instead of the conventional petrochemicals represents a sustainable alternative to classical synthetic approaches.

Co-reporter:Daniel Stubba;Günther Lahm;Mario Geffe;Dr. Jason W. Runyon;Dr. Anthony J. Arduengo III;Dr. Till Opatz
Angewandte Chemie International Edition 2015 Volume 54( Issue 47) pp:
Publication Date(Web):
DOI:10.1002/anie.201509446
Co-reporter:Daniel Stubba;Günther Lahm;Mario Geffe;Dr. Jason W. Runyon;Dr. Anthony J. Arduengo III;Dr. Till Opatz
Angewandte Chemie 2015 Volume 127( Issue 47) pp:14394-14396
Publication Date(Web):
DOI:10.1002/ange.201508500

Abstract

Die erste Totalsynthese des dimeren Berberin-Alkaloids Ilicifolin (Ilicifolin B) wird beschrieben. Sein Kohlenstoffgerüst wird dabei aus Ferulasäure, Veratrol und Methanol aufgebaut – Bausteine, die aus Holz als nachwachsendem Rohstoff gewonnen werden können. Die gleiche Strategie wurde für eine formale Totalsynthese von Morphinan-Alkaloiden genutzt. Die Verwendung von Ausgangsmaterialien auf Holzbasis (Xylochemikalien) anstelle von Petrochemikalien stellt eine nachhaltige Alternative zu klassischen Synthesestrategien dar.

Co-reporter:Daniel Stubba;Günther Lahm;Mario Geffe;Dr. Jason W. Runyon;Dr. Anthony J. Arduengo III;Dr. Till Opatz
Angewandte Chemie 2015 Volume 127( Issue 47) pp:
Publication Date(Web):
DOI:10.1002/ange.201509446
Co-reporter:Paresh Kumar Majhi, Susanne Sauerbrey, Alexander Leiendecker, Gregor Schnakenburg, Anthony J. Arduengo III and Rainer Streubel  
Dalton Transactions 2013 vol. 42(Issue 36) pp:13126-13136
Publication Date(Web):24 Jul 2013
DOI:10.1039/C3DT51557E
A synthetic route to C4/5-bis(phosphinoyl)imidazole-2-thiones (7d,e) (d: R1 = nBu, R2 = Me; e: R1 = n-dodecyl, R2 = Me) and C4/5-bis(thio/selenophosphinoyl)imidazole-2-thiones (8b,c), (9a,b,e) and 10a (a: R1 = R2 = Me; b: R1 = R2 = Ph, c: R1 = iPr, R2 = Me) is presented that employs initial C5 lithiation of mono-phosphinoyl/thiophosphinoyl substituted imidazole-2-thiones (3c–e)/(4a–c,e) followed by reaction with chlorodiphenylphosphane, leading to mixed phosphinoyl and phosphanyl substituted imidazole-2-thiones (5c–e) or mixed thiophosphinoyl and phosphanyl substituted imidazole-2-thiones (6a–c,e). Subsequent oxidation of mixed phosphinoyl and phosphanyl substituted imidazole-2-thione (5d,e) with H2O2–urea gives the bis(phosphinoyl) substituted imidazole-2-thiones (7d,e), and the oxidation of mixed thiophosphinoyl and phosphanyl substituted imidazole-2-thione (6a–c,e) using H2O2–urea, elemental sulfur or elemental selenium gives a set of mixed P(V)-chalcogenide substituted imidazole-2-thiones (8b,c), (9a,b,e) and 10a, respectively. P(V,V) substituted imidazole-2-thiones 7d and 9a reacted with tellurium tetrachloride, titanium tetrachloride or palladium dichloride to give complexes 11d, (12d and 12d′) and 14a, respectively, having a bidentate chelate (11d and 14a) or a monodentate bonding motif (12d,d′). The titanium complexes 12d,d′ slowly and selectively converted into the mono-ethoxy substituted product 13 possessing a seven membered chelate motif being unprecedented in the titanium chemistry of phosphine oxide donor ligands. The compounds were characterized by elemental analyses, spectroscopic and spectrometric methods and, in addition, X-ray diffraction studies in the case of 5c, 7d, 8b, 9a and 13.
Co-reporter:Dr. Anthony J. Arduengo III;Dr. Gabriela Gurau;Steven P. Kelley;William J. Marshall;Dr. Jason W. Runyon
Angewandte Chemie International Edition 2013 Volume 52( Issue 41) pp:10871-10873
Publication Date(Web):
DOI:10.1002/anie.201305714
Co-reporter:Dr. Anthony J. Arduengo III;Joshua S. Dolphin;Dr. Gabriela Gur&x103;u;William J. Marshall;Joseph C. Nelson;Dr. Viacheslav A. Petrov;Dr. Jason W. Runyon
Angewandte Chemie International Edition 2013 Volume 52( Issue 19) pp:5110-5114
Publication Date(Web):
DOI:10.1002/anie.201301503
Co-reporter:Dr. Anthony J. Arduengo III;Dr. Gabriela Gurau;Steven P. Kelley;William J. Marshall;Dr. Jason W. Runyon
Angewandte Chemie 2013 Volume 125( Issue 41) pp:11071-11073
Publication Date(Web):
DOI:10.1002/ange.201305714
Co-reporter:Dr. Anthony J. Arduengo III;Dr. Gabriela Gurau;Steven P. Kelley;William J. Marshall;Dr. Jason W. Runyon
Angewandte Chemie International Edition 2013 Volume 52( Issue 41) pp:
Publication Date(Web):
DOI:10.1002/anie.201307182
Co-reporter:Dr. Anthony J. Arduengo III;Dr. Gabriela Gurau;Steven P. Kelley;William J. Marshall;Dr. Jason W. Runyon
Angewandte Chemie 2013 Volume 125( Issue 41) pp:
Publication Date(Web):
DOI:10.1002/ange.201307182
Co-reporter:Dr. Anthony J. Arduengo III;Joshua S. Dolphin;Dr. Gabriela Gur&x103;u;William J. Marshall;Joseph C. Nelson;Dr. Viacheslav A. Petrov;Dr. Jason W. Runyon
Angewandte Chemie 2013 Volume 125( Issue 19) pp:5214-5218
Publication Date(Web):
DOI:10.1002/ange.201301503
Co-reporter:Susanne Sauerbrey, Paresh Kumar Majhi, Gregor Schnakenburg, Anthony J. Arduengo III and Rainer Streubel  
Dalton Transactions 2012 vol. 41(Issue 17) pp:5368-5376
Publication Date(Web):13 Feb 2012
DOI:10.1039/C2DT12483A
Selective formation of 4-phosphanylated 1,2-dialkyl imidazole-2-thiones 3a–f has been obtained via a lithiation followed by phosphanylation reaction. The reactivity of 3a–f was examined towards oxidation and complexation reactions. All products were unambiguously characterized by elemental analyses, spectroscopic and spectrometric methods including X-ray analysis (3a, 3b, 4b, 4d, 5b, 6a and 6d).
Co-reporter:Susanne Sauerbrey;Paresh Kumar Majhi;Sebastian Schwieger;Anthony J. Arduengo III;Rainer Streubel
Heteroatom Chemistry 2012 Volume 23( Issue 6) pp:513-519
Publication Date(Web):
DOI:10.1002/hc.21043

Novel bis(imidazole-2-thion-4-yl)- phosphanes (2a–d) were synthesized via lithiation of the precursor imidazole-2-thiones followed by the phosphanylation reaction. Oxidation of bis(imidazole-2-thion-4-yl)phosphane 2b–d with elemental sulfur and selenium led selectively and in good yields to the P-thio (3b–d) and P-seleno (4c) derivatives of bis(imidazole-2-thion-4-yl)phosphanes, respectively. The treatment of 2a,c with phosphorus trichloride gives the corresponding P-chloro derivatives 5a,c. These compounds were unambiguously characterized by elemental analyses, spectroscopic and spectrometric methods, in addition by single-crystal X-ray structure analysis in the case of 2d. © 2012 Wiley Periodicals, Inc. Heteroatom Chem 00:1–7, 2012; View this article online at wileyonlinelibrary.com. DOI 10.1002/hc.21043

Co-reporter:Holger Helten, Gregor Schnakenburg, Jörg Daniels, Anthony J. Arduengo III, and Rainer Streubel
Organometallics 2011 Volume 30(Issue 1) pp:84-91
Publication Date(Web):December 8, 2010
DOI:10.1021/om1007709
Acid-induced ring expansion of 2H-azaphosphirene complexes 1a−c with HCN is described. These reactions yielded 2H-1,4,2-diazaphosphole complexes 2a−c as a mixture with their κN-coordination isomers 3a−c in different ratios, depending upon the steric demand of the C3-substituent on the diazaphosphole ring. DFT calculations revealed that the isomerization can proceed in one step via a haptotropic P→N W(CO)5 shift. When a mixture of 2b and 3b was heated in acetonitrile, complete decomplexation with formation of 2H-1,4,2-diazaphosphole 5 was observed. Reaction of 2b and 3b with tetra-n-butylammonium fluoride in the presence of [Et3NH][OTf] led to complete desilylation of the P-CH(SiMe3)2 substituent and formation of complex 6, showing only κP-coordination. In addition to NMR, IR, and UV/vis spectra, the single-crystal X-ray diffraction structures of 2a,b and 6 are discussed.
Co-reporter:Paresh Kumar Majhi, Susanne Sauerbrey, Alexander Leiendecker, Gregor Schnakenburg, Anthony J. Arduengo III and Rainer Streubel
Dalton Transactions 2013 - vol. 42(Issue 36) pp:NaN13136-13136
Publication Date(Web):2013/07/24
DOI:10.1039/C3DT51557E
A synthetic route to C4/5-bis(phosphinoyl)imidazole-2-thiones (7d,e) (d: R1 = nBu, R2 = Me; e: R1 = n-dodecyl, R2 = Me) and C4/5-bis(thio/selenophosphinoyl)imidazole-2-thiones (8b,c), (9a,b,e) and 10a (a: R1 = R2 = Me; b: R1 = R2 = Ph, c: R1 = iPr, R2 = Me) is presented that employs initial C5 lithiation of mono-phosphinoyl/thiophosphinoyl substituted imidazole-2-thiones (3c–e)/(4a–c,e) followed by reaction with chlorodiphenylphosphane, leading to mixed phosphinoyl and phosphanyl substituted imidazole-2-thiones (5c–e) or mixed thiophosphinoyl and phosphanyl substituted imidazole-2-thiones (6a–c,e). Subsequent oxidation of mixed phosphinoyl and phosphanyl substituted imidazole-2-thione (5d,e) with H2O2–urea gives the bis(phosphinoyl) substituted imidazole-2-thiones (7d,e), and the oxidation of mixed thiophosphinoyl and phosphanyl substituted imidazole-2-thione (6a–c,e) using H2O2–urea, elemental sulfur or elemental selenium gives a set of mixed P(V)-chalcogenide substituted imidazole-2-thiones (8b,c), (9a,b,e) and 10a, respectively. P(V,V) substituted imidazole-2-thiones 7d and 9a reacted with tellurium tetrachloride, titanium tetrachloride or palladium dichloride to give complexes 11d, (12d and 12d′) and 14a, respectively, having a bidentate chelate (11d and 14a) or a monodentate bonding motif (12d,d′). The titanium complexes 12d,d′ slowly and selectively converted into the mono-ethoxy substituted product 13 possessing a seven membered chelate motif being unprecedented in the titanium chemistry of phosphine oxide donor ligands. The compounds were characterized by elemental analyses, spectroscopic and spectrometric methods and, in addition, X-ray diffraction studies in the case of 5c, 7d, 8b, 9a and 13.
Co-reporter:Susanne Sauerbrey, Paresh Kumar Majhi, Gregor Schnakenburg, Anthony J. Arduengo III and Rainer Streubel
Dalton Transactions 2012 - vol. 41(Issue 17) pp:NaN5376-5376
Publication Date(Web):2012/02/13
DOI:10.1039/C2DT12483A
Selective formation of 4-phosphanylated 1,2-dialkyl imidazole-2-thiones 3a–f has been obtained via a lithiation followed by phosphanylation reaction. The reactivity of 3a–f was examined towards oxidation and complexation reactions. All products were unambiguously characterized by elemental analyses, spectroscopic and spectrometric methods including X-ray analysis (3a, 3b, 4b, 4d, 5b, 6a and 6d).
1H-Imidazole, 2,3-dihydro-1,3-bis(2,4,6-trimethylphenyl)-
2-Propanol, 1,1,1,3,3,3-hexafluoro-2-(iodomethyl)-
2H-Imidazol-2-ylidene,4,5-dichloro-1,3-dihydro-1,3-bis(2,4,6-trimethylphenyl)-
2H-Imidazol-2-ylidene, 1,3-dihydro-1,3,4,5-tetramethyl-
1,3-Di(adamantan-1-yl)-1H-imidazol-3-ium chloride
2H-Imidazol-2-ylidene,1,3-dihydro-1,3-bis(tricyclo[3.3.1.13,7]dec-1-yl)-
1,2,4-TRIAZOL-1-YLBORON
1H-Imidazole, 2,3-dihydro-1,3-dimethyl-
1H-Imidazole, 1,3-bis(1,1-dimethylethyl)-2,3-dihydro-
1H-1,2,4-Triazole, ion(1-)