Co-reporter:Jason C. Applegate, Monisola K. Okeowo, Nathan R. Erickson, Brad M. Neal, Cindy L. Berrie, Nikolay N. Gerasimchuk and Mikhail V. Barybin
Chemical Science 2016 vol. 7(Issue 2) pp:1422-1429
Publication Date(Web):20 Nov 2015
DOI:10.1039/C5SC04017E
Mercapto (–SH) and isocyano (–NC) terminated conducting π-linkers are often employed in the ever-growing quest for organoelectronic materials. While such systems typically involve symmetric dimercapto or diisocyano anchoring of the organic bridge, this article introduces the chemistry of a linear azulenic π-linker equipped with one mercapto and one isocyano terminus. The 2-isocyano-6-mercaptoazulene platform was efficiently accessed from 2-amino-6-bromo-1,3-diethoxycarbonylazulene in four steps. The 2-NC end of this 2,6-azulenic motif was anchrored to the [Cr(CO)5] fragment prior to formation of its 6-SH terminus. Metalation of the 6-SH end of [(OC)5Cr(η1-2-isocyano-1,3-diethoxycarbonyl-6-mercaptoazulene)] (7) with Ph3PAuCl, under basic conditions, afforded X-ray structurally characterized heterobimetallic Cr0/AuI ensemble [(OC)5Cr(μ-η1:η1-2-isocyano-1,3-diethoxycarbonyl-6-azulenylthiolate)AuPPh3] (8). Analysis of the 13C NMR chemical shifts for the [(NC)Cr(CO)5] core in a series of the related complexes [(OC)5Cr(2-isocyano-6-X-1,3-diethoxy-carbonylazulene)] (X = –NC, Br, H, SH, SCH2CH2CO2CH2CH3, SAuPPh3) unveiled remarkably consistent inverse-linear correlations δ(13COtrans) vs. δ(13CN) and δ(13COcis) vs. δ(13CN) that appear to hold well beyond the above 2-isocyanoazulenic series to include complexes [(OC)5Cr(CNR)] containing strongly electron-withdrawing substituents R, such as CF3, CFClCF2Cl, C2F3, and C6F5. In addition to functioning as a sensitive 13C NMR handle, the essentially C4v-symmetric [(–NC)Cr(CO)5] moiety proved to be an informative, remote, νNC/νCO infrared reporter in probing chemisorption of 7 on the Au(111) surface.
Co-reporter:Jenifer K. Tucker;Mark L. Richter
JOM 2015 Volume 67( Issue 11) pp:2494-2501
Publication Date(Web):2015 November
DOI:10.1007/s11837-015-1378-8
Studies of the rotational activity of the enzymatic core (α3β3γ) of the F1-ATPase motor protein have relied on binding the enzyme to NTA-coated glass surfaces via polyhistidine tags engineered into the C-termini of each of the three α or β subunits. Those studies revealed the rotational motion of the central γ subunit by monitoring the motion of attached micron-long actin filaments or spherical nanoparticles. However, only a small percentage of the attached filaments or particles were observed to rotate, likely due, at least in part, to non-uniform surface attachment of the motor proteins. In this study, we have applied surface plasmon resonance to monitor the kinetics and affinity of binding of the His-tagged motor protein to NTA-coated gold sensor surfaces. The binding data, when fit to a heterogeneous binding model, exhibit two sets of adsorption–desorption rate constants with two dissociation constants of 4.0 × 10−9 M and 8.6 × 10−11 M for 6His-α3β3γ binding to the nickel ion-activated NTA surface. The data are consistent with mixed attachment of the protein via two (bimodal) and three (trimodal) NTA/Ni2+-His-tag interactions, respectively, with the less stable bimodal interaction dominating. The results provide a partial explanation for the low number of surface-attached F1 motors previously observed in rotation studies and suggest alternative approaches to uniform F1 motor surface attachment for future fabrication of motor-based nanobiodevices and materials.
Co-reporter:Brad M. Neal, Alexander S. Vorushilov, Anna M. DeLaRosa, Randall E. Robinson, Cindy L. Berrie and Mikhail V. Barybin
Chemical Communications 2011 vol. 47(Issue 38) pp:10803-10805
Publication Date(Web):05 Sep 2011
DOI:10.1039/C1CC14554A
Synthesis and self-assembly of structurally related mercapto- and isocyanoazulenes, including novel 2-mercapto-1,3-dicyanoazulene (4) and 2-isocyano-1,3-dicyanoazulene (5), are reported. Exposing 5 adsorbed on Au(111) to a solution of 4 displaces the isocyanoazulene monolayer with that of the mercaptoazulene as judged by νCN signatures of these films.
Co-reporter:Brad M. Neal, Alexander S. Vorushilov, Anna M. DeLaRosa, Randall E. Robinson, Cindy L. Berrie and Mikhail V. Barybin
Chemical Communications 2011 - vol. 47(Issue 38) pp:NaN10805-10805
Publication Date(Web):2011/09/05
DOI:10.1039/C1CC14554A
Synthesis and self-assembly of structurally related mercapto- and isocyanoazulenes, including novel 2-mercapto-1,3-dicyanoazulene (4) and 2-isocyano-1,3-dicyanoazulene (5), are reported. Exposing 5 adsorbed on Au(111) to a solution of 4 displaces the isocyanoazulene monolayer with that of the mercaptoazulene as judged by νCN signatures of these films.
Co-reporter:Jason C. Applegate, Monisola K. Okeowo, Nathan R. Erickson, Brad M. Neal, Cindy L. Berrie, Nikolay N. Gerasimchuk and Mikhail V. Barybin
Chemical Science (2010-Present) 2016 - vol. 7(Issue 2) pp:NaN1429-1429
Publication Date(Web):2015/11/20
DOI:10.1039/C5SC04017E
Mercapto (–SH) and isocyano (–NC) terminated conducting π-linkers are often employed in the ever-growing quest for organoelectronic materials. While such systems typically involve symmetric dimercapto or diisocyano anchoring of the organic bridge, this article introduces the chemistry of a linear azulenic π-linker equipped with one mercapto and one isocyano terminus. The 2-isocyano-6-mercaptoazulene platform was efficiently accessed from 2-amino-6-bromo-1,3-diethoxycarbonylazulene in four steps. The 2-NC end of this 2,6-azulenic motif was anchrored to the [Cr(CO)5] fragment prior to formation of its 6-SH terminus. Metalation of the 6-SH end of [(OC)5Cr(η1-2-isocyano-1,3-diethoxycarbonyl-6-mercaptoazulene)] (7) with Ph3PAuCl, under basic conditions, afforded X-ray structurally characterized heterobimetallic Cr0/AuI ensemble [(OC)5Cr(μ-η1:η1-2-isocyano-1,3-diethoxycarbonyl-6-azulenylthiolate)AuPPh3] (8). Analysis of the 13C NMR chemical shifts for the [(NC)Cr(CO)5] core in a series of the related complexes [(OC)5Cr(2-isocyano-6-X-1,3-diethoxy-carbonylazulene)] (X = –NC, Br, H, SH, SCH2CH2CO2CH2CH3, SAuPPh3) unveiled remarkably consistent inverse-linear correlations δ(13COtrans) vs. δ(13CN) and δ(13COcis) vs. δ(13CN) that appear to hold well beyond the above 2-isocyanoazulenic series to include complexes [(OC)5Cr(CNR)] containing strongly electron-withdrawing substituents R, such as CF3, CFClCF2Cl, C2F3, and C6F5. In addition to functioning as a sensitive 13C NMR handle, the essentially C4v-symmetric [(–NC)Cr(CO)5] moiety proved to be an informative, remote, νNC/νCO infrared reporter in probing chemisorption of 7 on the Au(111) surface.