The RNA splicing endonuclease cleaves two phosphodiester bonds within folded precursor RNAs during intron removal, producing the functional RNAs required for protein synthesis. Here we describe at a resolution of 2.85 angstroms the structure of a splicing endonuclease from Archaeglobus fulgidus bound with a bulge-helix-bulge RNA containing a noncleaved and a cleaved splice site. The endonuclease dimer cooperatively recognized a flipped-out bulge base and stabilizes sharply bent bulge backbones that are poised for an in-line RNA cleavage reaction. Cooperativity arises because an arginine pair from one catalytic domain sandwiches a nucleobase within the bulge cleaved by the other catalytic domain.