Bernd Harbrecht

Find an error

Name:
Organization: University of Marburg , Germany
Department:
Title: (PhD)
Co-reporter:Haitham Mohammad Abdelaal, Erik Pfeifer, Christina Grünberg, Bernd Harbrecht
Materials Letters 2014 Volume 136() pp:4-6
Publication Date(Web):1 December 2014
DOI:10.1016/j.matlet.2014.08.023
•We present a sacrificial templating approach to synthesize Ta2O5 hollow spheres.•In the synthesis protocol we utilize glucose-derived carbonaceous spheres as the sacrificial templates and Ta(OEt)5 as the oxide precursor.•The pyrolytic treatment at 800 °C for 1 h produces crystalline Ta2O5 hollow spheres.•The pyrolytic treatment at 500 °C for 5 h produces amorphous Ta2O5 hollow spheres.•The sacrificial template is the shape directing agent.A hydrothermal route to synthesize tantalum pentoxide (Ta2O5) hollow spheres (TPHSs) using tantalum pentaethoxide (Ta(OET)5) as the oxide precursor and glucose-derived carbonaceous spheres (CSs) as the sacrificial templates have been described. The carbonaceous spheres (CSs) were first prepared by hydrothermal carbonization of glucose, then a controlled coating of the template surface by Ta2O5 nanoparticles via the hydrolyzing of tantalum pentaethoxide at ambient temperature was implemented. Subsequent removal of the interior carbonaceous cores by pyrolytic treatment through oxidation in air produces freestanding TPHSs. The obtained TPHSs were characterized by means of SEM, TEM, XRD, and IR spectroscopy.Schematic diagram of the fabrication of Ta2O5 hollow spheres
Co-reporter:Marek Petrik; Dr. Bernd Harbrecht
ChemPhysChem 2013 Volume 14( Issue 11) pp:2403-2406
Publication Date(Web):
DOI:10.1002/cphc.201300352
Co-reporter:Manuel Janetzky;Eva Rödel Dr.;Clemens Pietzonka;Ulrich Müller ;Thorsten Ressler
Chemistry - A European Journal 2007 Volume 13(Issue 35) pp:
Publication Date(Web):18 SEP 2007
DOI:10.1002/chem.200700658

Pd4Br4Te3 was prepared from Pd, Te, and PdBr2 at 700 K. Its structure was determined by single-crystal X-ray diffraction to be triclinic, P, Pearson symbol aP22; a=842.5(2), b=845.0(3), c=864.8(3) pm; α=82.55(3), β=73.36(2), γ=88.80(2)°; Z=2. The Br and Te atoms are arranged according to the motif of cubic closest-packed spheres in which every 15th position is vacant; the Pd atoms occupy 8/15 of the octahedral voids. The symmetry relations with the packing of spheres are derived. Prominent structural units are hollow cuboctahedral [(PdBrTe)6] units, the Pd atoms are positioned near the centers of the square faces of the Br6Te6 cuboctahedra; the cuboctahedra and double-octahedral Pd2Br4Te6 units are connected to strands by sharing triangular Te3 faces. The strands are condensed by common Br atoms into layered assemblies. Conspicuously close TeTe contacts in the Te3 triangles indicate attractive TeTe interactions. The valence puzzle is resolved by the formula Pd(+II)4Br(−I)4Te(−4/3)3. Positive TeTe Mulliken orbital populations and the PdK, BrK, and TeLIII XANES spectra of Pd4Br4Te3 referenced to the spectra of PdBr2, K2PdBr6, PdTe, and PdTe2 are in accord with attractive TeTe interactions. The measured semiconducting and diamagnetic properties are compatible with the derived picture of chemical bonding in Pd4Br4Te3.

Pd4Br4Te3 wurde aus Pd, Te und PdBr2 bei 700 K hergestellt. Nach der Strukturanalyse mittels Einkristall-Röntgenbeugung kristallisiert es triklin, P, Pearson-Symbol aP22; a=842,5(2), b=845,0(3), c=864,8(3) pm; α=82,55(3), β=73,36(2), γ=88,80(2)°; Z=2. Die Br- und Te-Atome sind nach dem Muster einer kubisch-dichtesten Kugelpackung angeordnet, in der jede 15-te Position unbesetzt ist; die Pd-Atome besetzen 8/15 der Oktaderlücken. Die Symmetriebeziehungen zur Kugelpackung werden hergeleitet. Im Zentrum unbesetzte, kuboktaedrische [(PdBrTe)6]-Baugruppen sind mit Pd2Br4Te6-Doppeloktaedern über gemeinsame dreieckige Te3-Flächen zu Strängen verknüpft, die ihrerseits über gemeinsame Br-Atome zu Schichten angeordnet sind. Auffällig kurze TeTe-Kontakte in den Te3-Dreiecken deuten auf attraktive TeTe-Wechselwirkungen hin. Die zunächst rätselhafte Valenzsituation wird durch die Formulierung Pd(+II)4Br(−I)4Te(−4/3)3 gedeutet. Positive TeTe-Mulliken-Orbital-Populationen und die PdK-, BrK- und TeLIII-XANES-Spektren von Pd4Br4Te3 im Vergleich zu den Spektren von PdBr2, K2PdBr6, PdTe und PdTe2 bestätigen die attraktiven TeTe-Wechselwirkungen. Die gemessenen halbleitenden und diamagnetischen Eigenschaften von Pd4Br4Te3 passen zu dem abgeleiteten Bindungsmodell.

Co-reporter:Céline Allio and Bernd Harbrecht  
Dalton Transactions 2006 (Issue 45) pp:5352-5356
Publication Date(Web):26 Sep 2006
DOI:10.1039/B609434A
The crystal structure, phase relations and some physical properties of the binary zinc-rich phase RuZn3 are reported. The title compound is accessible via high-temperature reaction from the elements in the appropriate substance amount ratio. Its crystal structure was determined from a Rietveld profile fit to an X-ray diffractogram of pristine RuZn3 and confirmed by single-crystal X-ray structure analysis. The title compound adopts a tetragonal Al3Zr-type structure corresponding to an A2B2 anti-phase domain structure of the cubic AuCu3-type: a = 376.82(3) pm, c = 1554.78(13) pm, I4/mmm, Z = 4, R(F)(all data) = 0.0197, 153 unique reflections, 12 variables. The structure is discussed in the light of the Hume-Rothery concept. RuZn3 melts at 1373(2) K, is a moderate metallic conductor (ρ(293 K) = 6.2 mΩ cm) and exhibits basically temperature-independent paramagnetic properties. It coexists with Ru1−xZnx and RuZn6.
Co-reporter:L.D. Gulay, B. Harbrecht
Journal of Alloys and Compounds 2004 Volume 367(1–2) pp:103-108
Publication Date(Web):24 March 2004
DOI:10.1016/j.jallcom.2003.08.019
The crystal structure of the ζ1-phase Al3Cu4 was determined by means of X-ray powder diffraction: a=812.67(3) pm, b=1419.85(5) pm, c=999.28(3) pm, space group Fmm2, Pearson symbol oF88-4.7, RI=0.0633. The structure represents a distinctive 2a×2√3a×2c superstructure of a metal-deficient Ni2In-related structure. The ordering of the minor component and the vacancies in the atomic layers of hexagonal topology fulfill the principle of maximal self-avoidance.
Co-reporter:Wolfgang Hornfeck Dipl.-Chem.;Srinivasa Thimmaiah M. Sc.;Stephen Lee Dr.
Chemistry - A European Journal 2004 Volume 10(Issue 18) pp:
Publication Date(Web):3 AUG 2004
DOI:10.1002/chem.200400059

The crystal structure, its variation within the homogeneity range and some physical properties of the new zinc-rich, partly disordered phase Ir7+7δZn97−11δ (0.31≤δ≤0.58) are reported. The structures of three phases with distinct composition were determined by means of single crystal X-ray diffraction. Ir7+7δZn97−11δ exhibits a significant homogeneity range, adopts a complex γ-brass related cubic structure (cF403–406), is stable up to 1201(2) K, and transforms sluggishly below 1048(4) K into a phase with 394 atoms in the monoclinic primitive unit cell. It is a diamagnetic, moderate metallic conductor. Six distinguishable clusters consisting of 22–29 atoms comprise the structure. The clusters are situated about the 16 high symmetry points of the cubic F lattice. The structure can be subdivided into two partial structures, one with constant composition IrZn5 and 192 atoms per unit cell and a second being significantly richer in zinc with variable composition and 211–214 atoms per unit cell. The meandering triply periodic minimal surface of two interpenetrating diamond-like nets separates the compositionally variable from its complementary invariant part. The phase width is coupled with substitutional and positional disorder. A comprehensive analysis of composition-dependent site occupancy factors reveals a linear correlation between the various types of disorder which can be conclusively interpreted in terms of an incoherent intergrowth of distinctive partial structures in variable proportions on a length scale comparable to the size of the approximately 2 nm large unit cell. On the basis of the structural findings we derive the structure chemically meaningful formula Ir7+7δZn97−11δ which quantitatively accounts for the interrelation between substitutional and positional disorder and provides a measure for the homogeneity range in structural terms.

Co-reporter:Srinivasa Thimmaiah, Klaus W. Richter, Stephen Lee, Bernd Harbrecht
Solid State Sciences 2003 Volume 5(Issue 9) pp:1309-1317
Publication Date(Web):September 2003
DOI:10.1016/S1293-2558(03)00178-X
The constitution of the γ-phase field in the PtZn system was reinvestigated. The samples were prepared from the elements in sealed silica tubes at 1320 K followed by slow cooling to 970 K. Three structurally distinct γ-phases were identified by means of single crystal X-ray diffraction. The γ1- and γ1′-phase represent two structurally intimately related 2a×2a×2a superstructures of the ordinary γ-Pt2Zn10.75. Three crystal structures were refined from single crystal intensity data: γ1-Pt5.12Zn20.47 (, a=1809.1(1) pm, cF416-6.6, RF=0.043), γ1-Pt4.72Zn20.92 (, a=1812.8(2) pm, cF416-5.8, RF=0.034), and γ1′-Pt4.25Zn20.34 (, a=1814.0(1) pm, cF416-22.7, RF=0.054). The structures are discussed in terms of four symmetrically inequivalent 26 atom clusters each comprising inner tetrahedral (IT), outer tetrahedral (OT), octahedral (OH) and cuboctahedral (CO) positions. The homogeneity range of the γ1-phase extends between 18.4 and 20.0 at.% Pt, a range which encompasses the composition Pt5Zn21. Two symmetrically independent, ordered Pt4Zn22 clusters form the compositionally invariant part of the structure. Two complementary, partly disordered Pt6±δZn20−δ′ clusters account for the homogeneity range of the phase. They vary in composition due to mutual Pt/Zn substitution, vacancies at Zn sites, and partial positional disorder. The closely related phase γ1′-Pt4.25Zn20.34 is separated from the γ1-phase by a small miscibility gap which is indicated by isopiestic measurements and a discontinuous jump of the vacancy concentration. The melting point of the phases increases with rise of the Pt content: 1136(2) K (γ), 1238(5) K (γ1′) and 1251(3) K (γ1). The magnetic susceptibility is dominated by the core diamagnetism of the constituents. χmol was found to vary between −4.7×10−10 and −3.1×10−10 m3 mol−1.Graphic
Co-reporter:Matthias Conrad Dr. Dr.
Chemistry - A European Journal 2002 Volume 8(Issue 14) pp:
Publication Date(Web):20 JUN 2002
DOI:10.1002/1521-3765(20020715)8:14<3093::AID-CHEM3093>3.0.CO;2-0

The crystal structure of a rational approximant of an unprecedented dodecagonal quasicrystal is reported. The atomic arrangement of the tantalum-rich telluride Ta97Te60 has been determined from 30 458 symmetrically independent X-ray intensities of a crystal twinned by metric merohedry: a=2767.2(2), b=2767.2(2), c=2061.3(2) pm, space group P212121, Pearson symbol oP628, 1415 variables, R(F)=0.059. A dodecagonal-shaped, vaulted Ta151Te74 cluster with maximum symmetry 6mm can be seen as a characteristic motif of the structure. Each cluster measures about 2.5 nm across and consists of nineteen concentrically condensed hexagonal antiprismatic Ta13 clusters which are capped with Te atoms. The Ta151Te74 clusters can cover the plane distinctly in different ways, thereby forming a series of phases which are closely related both structurally and compositionally. In Ta97Te60 the buckled clusters decorate the vertices of a square tiling at a 2 nm length scale to result in corrugated lamellae [Te30Ta41Ta15Ta41Te30] each about 1 nm thick. The lamellae are stacked along the c axis, corresponding to the direction of the pseudo-twelvefold axis of symmetry. Symmetry arguments are proposed that the twinning of the structure may be associated with a fine-tuning of weak interlayer Te–Te interactions which are reflected in a minimization of the deviation from the mean distance 〈dTe–Te〉 and a doubling of the stacking vector c.

Co-reporter:Gissur Örlygsson Dipl.-Chem. Dr.
Chemistry - A European Journal 2000 Volume 6(Issue 22) pp:
Publication Date(Web):31 OCT 2000
DOI:10.1002/1521-3765(20001117)6:22<4170::AID-CHEM4170>3.0.CO;2-#

Zr5Te6 has been synthesized and its structure determined by means of single crystal X-ray diffraction to be trigonal, , Z=3, Pearson symbol hP33, a=1172.8(2) pm, c=707.0(1) pm. Zr5Te6 adopts a metal-deficient, vacancy-ordered 3a×3a×1c superstructure of the NiAs type structure. In the Zr atom layers, alternately one and two out of nine Zr atoms are missing. The less densely populated layers (7/9) consist of star-shaped Zr7 clusters with intracluster contacts of 351.1 pm; the shortest Zr–Zr intercluster distance is 470.5 pm. In the more densely populated Zr atom layers (8/9), three quarters of the Zr atoms are arranged to pairs (326.4 pm). The distinctive distribution of the vacancies affords a topologically uniform fivefold Zr coordination (283.5–302.6 pm) for all three crystallographically inequivalent Te atoms. They are shifted towards the vacancies in the Zr atom layers. The associated corrugation of the Te atom layers is characterized by an amplitude of 28 pm. The Te–Te contacts are ≥368.1 pm. According to extended Hückel calculations, the defects in the Zr atom layers lead to a reduction in overall Zr–Te bonding interactions relative to ZrTe (NiAs). However, through the clustering the total attractive intralayer Zr–Zr interactions increase considerably, thus providing decisive stabilization of the structure. As revealed by thermal analyses, Zr5Te6 undergoes a reversible phase transition at 1513±5 K. On the Zr-rich side, Zr5Te6 coexists with ZrTe (WC), and, above 1438±5 K with the hitherto unknown ZrTe (MnP). Zr5Te6 exhibits temperature independent paramagnetic properties (χmol=0.7×10−3 cm3 mol−1) that are typical for a metallic conductor. An abrupt increase in the magnitude of the diamagnetic susceptibility below 2.2 K in a weak magnetic field indicates a superconducting transition.

Das niedervalente Zirconiumtellurid Zr5Te6 wurde hergestellt. Einer Röntgenstrukturanalyse von einem meroedrisch verzwillingten Kristall zufolge kristallisiert Zr5Te6 trigonal in der Raumgruppe , Pearson Symbol hP33, a=1172.8(2) pm, c=707.0(1) pm. Die Struktur entspricht einer metalldefizienten 3a×3a×1c-Überstruktur des NiAs-Typs mit geordneten Leerstellen. In den Zr-Atomschichten fehlen abwechselnd eins und zwei von neun Zr-Atomen. Die weniger dicht belegten Schichten (7/9) enthalten sternförmige Zr7-Cluster mit Intraclusterkontakten von 351.1 pm. Die kürzesten Interclusterabstände betragen 470.5 pm. In den dichter belegten Schichten sind dreiviertel der Zr-Atome im Abstand von 326.4 pm zu Paaren angeordnet. Die spezifische Verteilung der Leerstellen geht mit einer topologisch einheitlichen, fünffachen Koordination der drei kristallographisch ungleichen Te-Atome einher. Die Veschiebung der Te-Atome in Richtung der Lücken führt zu einer Wellung der Te-Atomschichten mit einer Amplitude von 28 pm und Te–Te-Kontakten ≥368.1 pm. Extended-Hückel-Rechnungen nach bedingen die Defekte in den Zr-Atomschichten verglichen mit ZrTe (NiAs) eine Verminderung heteronuklearer Bindungen, wohingegen die Zr–Zr-Wechselwirkungen innerhalb der Schicht trotz der Unterbesetzung infolge der Clusterung deutlich verstärkt sind, wodurch die Struktur entscheidend stabilisiert wird. Zr5Te6 durchläuft bei 1513±5 K eine reversible Phasenumwandlung. Auf der Zr-reichen Seite koexistiert es mit ZrTe (WC) und oberhalb 1438±5 K mit ZrTe (MnP). Zr5Te6 zeigt einen für Metalle typischen temperaturunabhängigen Paramagnetismus (χmol=0.7×10−3 cm3 mol−1). Ein steiler Abfall der diamagnetischen Suszeptibilität unterhalb 2.2 K im schwachen Magnetfeld verweist auf einen Übergang in den supraleitenden Zustand.

Ruthenium, compd. with zinc (1:3)
Platinum, compd. with zinc (5:21)
FLUCYBENE
Silicic acid (H2SiO3),aluminum potassium salt (2:1:1)
tantalum ditelluride
Zirconium sulfide(ZrS2)
Phosphine telluride, triethyl-
Tantalum selenide(TaSe2)