Co-reporter:Sumire Kudo, Airi Harada, Hiroe Kubota, Keiko Sasaki, and Takashi Kaneta
ACS Omega October 2017? Volume 2(Issue 10) pp:7329-7329
Publication Date(Web):October 27, 2017
DOI:10.1021/acsomega.7b00998
Here, we developed an enzyme assay of manganese peroxidase (MnP) by capillary electrophoresis using an in-capillary reaction and applied it to a simultaneous assay of MnP and lignin peroxidase (LiP). The enzyme activity of MnP was determined from the peak area corresponding to Mn(III)–malonate produced by the plug–plug reaction between MnP and Mn(II) in a separation capillary. A background electrolyte containing 250 mM malonate buffer (pH 4.5) and 5 mM cetyltrimethylammonium bromide was employed for the separation of Mn(III)–malonate from MnP at −10 kV after a plug–plug reaction for 5 min. Although the assay permitted the determination of purified MnP, we found that both LiP and MnP have similar activities against their substrates, that is, LiP catalyzed the oxidation reaction of Mn(II) as well as MnP, whereas MnP catalyzed the oxidation reaction of veratryl alcohol which was the substrate used in the LiP assay developed previously. Thus, we proposed a method to discriminate MnP from LiP based on the difference in the activities of these enzymes to each substrate. Amounts of MnP and LiP in a mixture were successfully evaluated by the proposed method.
Co-reporter:Shingo Karita, Takashi Kaneta
Analytica Chimica Acta 2016 Volume 924() pp:60-67
Publication Date(Web):14 June 2016
DOI:10.1016/j.aca.2016.04.019
•Novel μPADs for the determination of both Ca2+ and Mg2+ were developed.•The μPAD titration is completed within a few minutes.•The μPAD titration requires no particular skills as needed in the classic titrations.•The method achieves low consumption of the reagents and samples.•The μPADs can be employed for the determinations of practical samples.We developed microfluidic paper-based analytical devices (μPADs) for the chelate titrations of Ca2+ and Mg2+ in natural water. The μPAD consisted of ten reaction zones and ten detection zones connected through narrow channels to a sample zone located at the center. Buffer solutions with a pH of 10 or 13 were applied to all surfaces of the channels and zones. Different amounts of ethylenediaminetetraacetic acid (EDTA) were added to the reaction zones and a consistent amount of a metal indicator (Eriochrome Black T or Calcon) was added to the detection zones. The total concentrations of Ca2+ and Mg2+ (total hardness) in the water were measured using a μPAD containing a buffer solution with a pH of 10, whereas only Ca2+ was titrated using a μPAD prepared with a potassium hydroxide solution with a pH of 13. The μPADs permitted the determination of Ca2+ and Mg2+ in mineral water, river water, and seawater samples within only a few minutes using only the naked eye—no need of instruments.
Co-reporter:Waleed Alahmad, Kanchana Uraisin, Duangjai Nacapricha and Takashi Kaneta
Analytical Methods 2016 vol. 8(Issue 27) pp:5414-5420
Publication Date(Web):01 Jun 2016
DOI:10.1039/C6AY00954A
A miniaturized detection system for chemiluminescence that is generated on a microfluidic paper-based analytical device (μPAD) was developed using optical fibers and was applied to the determination of Cr(III). The μPAD was fabricated by wax printing and consisted of 6 separate channels in a parallel alignment. Each channel was composed of an injection zone for a reagent solution, a reaction zone, and a waste zone. The μPAD was placed on a plastic holder equipped with 6 optical fibers to collect chemiluminescence (CL). The other ends of the optical fibers were bundled and introduced into a small photomultiplier tube module to obtain the CL signals. The CL reaction was based on luminol oxidation by hydrogen peroxide in the presence of Cr(III), which catalyzed the reaction in an alkaline medium. The reaction conditions, including the use of an enhancer and a masking agent, were optimized to obtain high sensitivity and selectivity. Under the optimal conditions, a linear range was obtained at 0.05 to 1.00 ppm with a detection limit of 0.02 ppm. The analysis time was less than 1 min per one μPAD in order to obtain 6 measurements of differing concentrations with a precision of <6.5%. This method was successfully applied to the determination of Cr(III) spiked into natural water samples at the sub-ppm range.
Co-reporter:Shingo Karita and Takashi Kaneta
Analytical Chemistry 2014 Volume 86(Issue 24) pp:12108
Publication Date(Web):November 25, 2014
DOI:10.1021/ac5039384
Rapid and simple acid–base titration was accomplished using a novel microfluidic paper-based analytical device (μPAD). The μPAD was fabricated by wax printing and consisted of ten reservoirs for reaction and detection. The reaction reservoirs contained various amounts of a primary standard substance, potassium hydrogen phthalate (KHPth), whereas a constant amount of phenolphthalein was added to all the detection reservoirs. A sample solution containing NaOH was dropped onto the center of the μPAD and was allowed to spread to the reaction reservoirs where the KHPth neutralized it. When the amount of NaOH exceeded that of the KHPth in the reaction reservoirs, unneutralized hydroxide ion penetrated the detection reservoirs, resulting in a color reaction from the phenolphthalein. Therefore, the number of the detection reservoirs with no color change determined the concentration of the NaOH in the sample solution. The titration was completed within 1 min by visually determining the end point, which required neither instrumentation nor software. The volumes of the KHPth and phenolphthalein solutions added to the corresponding reservoirs were optimized to obtain reproducible and accurate results for the concentration of NaOH. The μPADs determined the concentration of NaOH at orders of magnitude ranging from 0.01 to 1 M. An acid sample, HCl, was also determined using Na2CO3 as a primary standard substance instead of KHPth. Furthermore, the μPAD was applicable to the titrations of nitric acid, sulfuric acid, acetic acid, and ammonia solutions. The μPADs were stable for more than 1 month when stored in darkness at room temperature, although this was reduced to only 5 days under daylight conditions. The analysis of acidic hot spring water was also demonstrated in the field using the μPAD, and the results agreed well with those obtained by classic acid–base titration.
Co-reporter:Naoki Higashidani, Takashi Kaneta, Nobuyuki Takeyasu, Shoji Motomizu, Naoko Okibe, Keiko Sasaki
Talanta 2014 Volume 122() pp:240-245
Publication Date(Web):May 2014
DOI:10.1016/j.talanta.2014.01.057
•We developed a simple pretreatment method for speciation of inorganic arsenic.•The developed method was applicable to the study on oxidation by an archaeon.•We determined arsenic species in the archaeon cells for the first time.•We found that As(III) was completely oxidized to As(V) in the archaeon cells.The thermoacidophilic iron-oxidizing archaeon Acidianus brierleyi is a microorganism that could be useful in the removal of inorganic As from wastewater, because it simultaneously oxidizes As(III) and Fe(II) to As(V) and Fe(III) in an acidic culture medium, resulting in the immobilization of As(V) as FeAsO4. To investigate the oxidation mechanism, speciation of the As species in both the cells and its culture media is an important issue. Here we describe the successive determination of As(III), As(V), and total As in A. brierleyi and its culture medium via a facile method based on inductively coupled plasma–optical emission spectroscopy (ICP–OES) with a flow injection pretreatment system using a mini-column packed with an anion-exchange resin. The flow-injection pretreatment system consisted of a syringe pump, a selection valve, and a switching valve, which were controlled by a personal computer. Sample solutions with the pH adjusted to 5 were flowed into the mini-column to retain the anionic As(V), whereas As(III) was introduced into ICP–OES with no adsorption on the mini-column due to its electrically neutral form. An acidic solution (1 M HNO3) was then flowed into the mini-column to elute As(V) followed by ICP–OES measurement. The same sample was also subjected to ICP–OES without being passed through the mini-column in order to determine the total amounts of As(III) and As(V). The method was verified by comparing the results of the total As with the sum of As(III) and As(V). The calibration curves showed good linearity with limits of detection of 158, 86, and 211 ppb for As(III), As(V), and total As, respectively. The method was successfully applicable to the determination of the As species contained in the pellets of A. brierleyi and their culture media. The results suggested that the oxidation of As(III) was influenced by the presence of Fe(II) in the culture medium, i.e., Fe(II) enhanced the oxidation of As(III) in A. brierleyi. In addition, we found that no soluble As species was contained in the cell pellets and more than 60% of the As(III) in the culture medium was oxidized by A. brierleyi after a 6-day incubation.
Co-reporter:Kaori Yamaguchi, Nobuyuki Takeyasu, Takashi Kaneta
Journal of Chromatography A 2013 Volume 1288() pp:149-154
Publication Date(Web):3 May 2013
DOI:10.1016/j.chroma.2013.02.090
•A novel processing method was proposed to determine the association constants.•Interesting selectivity of G-gel to aromatic compounds was found.•Selectivity was discussed based on the determined association constants.•The possible interactions were proposed.Hydro gel formed by 5′-guanosine monophosphate (GMP) in the presence of a potassium ion is expected to exhibit interesting selectivity in capillary electrophoretic separations. Here, we estimated the conditional association constants between the hydro gel (G-gel) and aromatic compounds by capillary electrophoresis in order to investigate the separation selectivity that is induced by the G-gel. Several aromatic compounds were separated in a solution containing GMP and potassium ion at different concentrations. The association constants were calculated by correlating the electrophoretic mobilities of the analytes obtained experimentally using a concentration of G-gel. During semi-quantitative estimation, naphthalene derivatives had larger association constants (Kass = 10.3–16.8) compared with those of benzene derivatives (Kass = 3.91–5.31), which means that the binding sites of G-gel match better to a naphthalene ring than to a benzene ring. A hydrophobic interaction was also found when the association constants for alkyl resorcinol were compared with those of different hydrocarbon chains. The association constants of nucleobases and tryptophan ranged from 6.05 to 12.6, which approximated the intermediate values between benzene and naphthalene derivatives. Consequently, the selective interaction between G-gel and aromatic compounds was classified as one of three types: (1) an intercalation into stacked planar GMP tetramers; (2) a hydrophobic interaction with a long alkyl chain; or, (3) a small contribution of steric hindrance and/or hydrogen bonding with functional groups such as amino and hydroxyl groups.
Co-reporter:Genki Inoue, Takashi Kaneta, Toshio Takayanagi, Junichi Kakehi, Hiroyasu Motose and Taku Takahashi
Analytical Methods 2013 vol. 5(Issue 11) pp:2854-2859
Publication Date(Web):12 Apr 2013
DOI:10.1039/C3AY26360F
Herein, we report a novel method for the determination of polyamines in a sample extracted from Arabidopsis thaliana by capillary electrophoresis (CE) using salicylaldehyde-5-sulfonate (SAS) as a derivatizing reagent. An aldehyde group of SAS forms a Schiff base with amino groups of aliphatic polyamines, resulting in an anionic species with an absorption band in the ultraviolet region. The derivatization method was straightforward since the derivatives were formed by mixing a sample with the derivatizing reagent at a neutral pH. In addition, the negative charges induced by SAS led to a high resolution with a short analysis time. This method permitted the separation of five polyamines, which play important roles in plants. However, further improvement in sensitivity was needed for the determination of the polyamines in plant samples. Therefore, the CE method was coupled with solid-phase extraction (SPE) using an ion-pairing formation with sodium dodecyl benzene sulfonate. The SPE method improved the concentration limits of detection to sub-μM levels, which corresponded with a 10-fold enhancement. The calibration curves for cadaverine, putrescine, and spermidine were linear with concentrations that ranged from 1 to 20 μM and correlation coefficients (R2) were greater than 0.998. The proposed method was applied to the determination of spermidine in a plant sample, Arabidopsis thaliana.
Co-reporter:
Analytical Methods (2009-Present) 2013 - vol. 5(Issue 11) pp:NaN2859-2859
Publication Date(Web):2013/04/12
DOI:10.1039/C3AY26360F
Herein, we report a novel method for the determination of polyamines in a sample extracted from Arabidopsis thaliana by capillary electrophoresis (CE) using salicylaldehyde-5-sulfonate (SAS) as a derivatizing reagent. An aldehyde group of SAS forms a Schiff base with amino groups of aliphatic polyamines, resulting in an anionic species with an absorption band in the ultraviolet region. The derivatization method was straightforward since the derivatives were formed by mixing a sample with the derivatizing reagent at a neutral pH. In addition, the negative charges induced by SAS led to a high resolution with a short analysis time. This method permitted the separation of five polyamines, which play important roles in plants. However, further improvement in sensitivity was needed for the determination of the polyamines in plant samples. Therefore, the CE method was coupled with solid-phase extraction (SPE) using an ion-pairing formation with sodium dodecyl benzene sulfonate. The SPE method improved the concentration limits of detection to sub-μM levels, which corresponded with a 10-fold enhancement. The calibration curves for cadaverine, putrescine, and spermidine were linear with concentrations that ranged from 1 to 20 μM and correlation coefficients (R2) were greater than 0.998. The proposed method was applied to the determination of spermidine in a plant sample, Arabidopsis thaliana.