Z.-K. Liu

Find an error

Name: Liu, Zi Kui
Organization: Pennsylvania State University , USA
Department: State College
Title: Professor(PhD)
Co-reporter:Y. Wang, S. Curtarolo, C. Jiang, R. Arroyave, T. Wang, G. Ceder, L.-Q. Chen, Z.-K. Liu
Calphad 2004 Volume 28(Issue 1) pp:79-90
Publication Date(Web):March 2004
DOI:10.1016/j.calphad.2004.05.002
A systematic first-principles calculation for the total energies of 78 pure elemental solids has been performed at zero Kelvin using the projector augmented-wave method within the generalized gradient approximation. The total energy differences, i.e. lattice stabilities, among the face-centered-cubic (fcc), body-centered-cubic (bcc), and hexagonal-close-packed (hcp) crystal structures are studied and compared with the Scientific Group Thermodata Europe (SGTE) database developed by the CALPHAD method. For non-transitional elements, favorable comparison is observed, while for the majority of transition elements, particularly the V, Cr, Mn, Fe, and Co group elements, significant discrepancies exist. The Bain/tetragonal distortion analysis between fcc and bcc structures shows that when one structure is stable, the other is unstable, and the higher the energy of the unstable structure, the larger the discrepancy. Through analysis of the alloying effect in binary systems, we conclude that the lattice stability of unstable structures obtained through extrapolation of first-principles calculations in binary systems is close to the SGTE lattice stability obtained by the CALPHAD method.
Magnesium, compd. with zinc (4:7)
Aluminum, compd. with chromium (8:5)
Aluminum, compd. with chromium (11:2)
Nickel, compd. with titanium (1:2)
Magnesium, compd. with zinc (2:11)
Chromium, compd. with cobalt (1:1)
Aluminum, compd. with chromium (9:4)
Aluminum, compd. with cobalt (5:2)
Aluminum, compd. with nickel (3:2)