Co-reporter:Ravikanth Velagapudi;Abdelmeneim El-Bakoush
Molecular and Cellular Biochemistry 2017 Volume 435( Issue 1-2) pp:149-162
Publication Date(Web):27 May 2017
DOI:10.1007/s11010-017-3064-3
Thymoquinone is a known inhibitor of neuroinflammation. However, the mechanism(s) involved in its action remain largely unknown. In this study, we investigated the roles of cellular reactive oxygen species (ROS), 5′ AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1) in the anti-neuroinflammatory activity of thymoquinone. We investigated effects of the compound on ROS generation in LPS-activated microglia using the fluorescent 2′,7′-dichlorofluorescin diacetate (DCFDA)-cellular ROS detection. Immunoblotting was used to detect protein levels of p40phox, gp91phox, AMPK, LKB1 and SIRT1. Additionally, ELISA and immunofluorescence were used to detect nuclear accumulation of SIRT1. NAD+/NADH assay was also performed. The roles of AMPK and SIRT1 in anti-inflammatory activity of thymoquinone were investigated using RNAi and pharmacological inhibition. Our results show that thymoquinone reduced cellular ROS generation, possibly through inhibition of p40phox and gp91phox protein. Treatment of BV2 microglia with thymoquinone also resulted in elevation in the levels of LKB1 and phospho-AMPK proteins. We further observed that thymoquinone reduced cytoplasmic levels and increased nuclear accumulation of SIRT1 protein and increased levels of NAD+. Results also show that the anti-inflammatory activity of thymoquinone was abolished when the expressions of AMPK and SIRT1 were suppressed by RNAi or pharmacological antagonists. Pharmacological antagonism of AMPK reversed thymoquinone-induced increase in SIRT1. Taken together, we propose that thymoquinone inhibits cellular ROS generation in LPS-activated BV2 microglia. It is also suggested that activation of both AMPK and NAD+/SIRT1 may contribute to the anti-inflammatory, but not antioxidant activity of the compound in BV2 microglia.
Co-reporter:Ravikanth Velagapudi, Asit Kumar, Harsharan S. Bhatia, Abdelmeneim El-Bakoush, Izabela Lepiarz, Bernd L. Fiebich, Olumayokun A. Olajide
International Immunopharmacology 2017 Volume 48(Volume 48) pp:
Publication Date(Web):1 July 2017
DOI:10.1016/j.intimp.2017.04.018
•Thymoquinone inhibits NF-κB-mediated neuroinflammation.•Thymoquinone activates the Nrf2/ARE protective mechanisms in the microglia.•Nrf2 is required for inhibition of neuroinflammation by thymoquinone.Thymoquinone is an antioxidant phytochemical that has been shown to inhibit neuroinflammation. However, little is known about the potential roles of intracellular antioxidant signalling pathways in its anti-inflammatory activity. The objective of this study was to elucidate the roles played by activation of the Nrf2/ARE antioxidant mechanisms in the anti-inflammatory activity of this compound. Thymoquinone inhibited lipopolysaccharide (LPS)-induced neuroinflammation through interference with NF-κB signalling in BV2 microglia. Thymoquinone also activated Nrf2/ARE signalling by increasing nuclear localisation, DNA binding and transcriptional activity of Nrf2, as well as increasing protein levels of HO-1 and NQO1. Suppression of Nrf2 activity through siRNA or with the use of trigonelline resulted in the loss of anti-inflammatory activity by thymoquinone. Taken together, our studies show that thymoquinone inhibits NF-κB-dependent neuroinflammation in BV2 microglia, by targeting antioxidant pathway involving activation of both Nrf2/ARE. We propose that activation of Nrf2/ARE signalling pathway by thymoquinone probably results in inhibition of NF-κB-mediated neuroinflammation.Download high-res image (83KB)Download full-size image
Co-reporter:Samuel A. Onasanwo;Ravikanth Velagapudi
Molecular and Cellular Biochemistry 2016 Volume 414( Issue 1-2) pp:23-36
Publication Date(Web):2016 March
DOI:10.1007/s11010-016-2655-8
Kolaviron is a mixture of biflavonoids found in the nut of the West African edible seed Garcinia kola, and it has been reported to exhibit a wide range of pharmacological activities. In this study, we investigated the effects of kolaviron in neuroinflammation. The effects of kolaviron on the expression of nitric oxide/inducible nitric oxide synthase (iNOS), prostaglandin E2 (PGE2)/cyclooxygenase-2, cellular reactive oxygen species (ROS) and the pro-inflammatory cytokines were examined in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. Molecular mechanisms of the effects of kolaviron on NF-κB and Nrf2/ARE signalling pathways were analysed by immunoblotting, binding assays and reporter assays. RNA interference was used to investigate the role of Nrf2 in the anti-inflammatory effect of kolaviron. Neuroprotective effect of kolaviron was assessed in a BV2 microglia/HT22 hippocampal neuron co-culture. Kolaviron inhibited the protein levels of NO/iNOS, PGE2/COX-2, cellular ROS and the pro-inflammatory cytokines (TNFα and IL-6) in LPS-stimulated microglia. Further mechanistic studies showed that kolaviron inhibited neuroinflammation by inhibiting IκB/NF-κB signalling pathway in LPS-activated BV2 microglia. Kolaviron produced antioxidant effect in BV2 microglia by increasing HO-1 via the Nrf2/antioxidant response element pathway. RNAi experiments revealed that Nrf2 is needed for the anti-inflammatory effects of kolaviron. Kolaviron protected HT22 neurons from neuroinflammation-induced toxicity. Kolaviron inhibits neuroinflammation through Nrf2-dependent mechanisms. This compound may therefore be beneficial in neuroinflammation-related neurodegenerative disorders.
Co-reporter:Uchechukwu P. Okorji, Olumayokun A. Olajide
Bioorganic & Medicinal Chemistry 2014 Volume 22(Issue 17) pp:4726-4734
Publication Date(Web):1 September 2014
DOI:10.1016/j.bmc.2014.07.007
Artesunate is a semi-synthetic derivative of artemisinin used to treat malaria, and has been shown to possess anti-inflammatory activity. In this study, we have investigated the effect of artesunate on PGE2 production/COX-2 protein expression in LPS + IFNγ-activated BV2 microglia. To further understand the mechanism of action of this compound, we investigated its interference with NF-κB and p38 MAPK signalling pathways. PGE2 production was determined using EIA, while protein expressions of inflammatory targets like COX-2, mPGES-1, IκB, p38 and MAPKAPK2 were evaluated using western blot. An NF-κB-bearing luciferase reporter gene assay was used to test the effect of artesunate on NF-κB-mediated pro-inflammatory gene expression in HEK293 cells stimulated with TNFα (1 ng/ml). Artesunate (2 and 4 μM), significantly (p <0.01) suppressed PGE2 production in LPS + IFNγ-activated BV2 microglia. This effect was found to be mediated via reduction in COX-2 and mPGES-1 proteins. Artesunate also produced significant inhibition of TNFα and IL-6 production in activated BV2 microglia. Further investigations showed that artesunate (0.5–4 μM) significantly (p <0.001) reduced NF-κB-driven luciferase expression, and inhibited IκB phosphorylation and degradation, through inhibition of IKK. Artesunate inhibited phosphorylation of p38 MAPK and its substrate MAPKAPK2 following stimulation of microglia with LPS + IFNγ. Taken together, we have shown that artesunate prevents neuroinflammation in BV2 microglia by interfering with NF-κB and p38 MAPK signalling.
Co-reporter:Olumayokun A. Olajide, Harsharan S. Bhatia, Antonio C.P. de Oliveira, Colin W. Wright, Bernd L. Fiebich
European Journal of Medicinal Chemistry 2013 Volume 63() pp:333-339
Publication Date(Web):May 2013
DOI:10.1016/j.ejmech.2013.02.004
Cryptolepis sanguinolenta and its bioactive alkaloid, cryptolepine have shown anti-inflammatory activity. However, the underlying mechanism of anti-inflammatory action in neuronal cells has not been investigated. In the present study we evaluated an extract of C. sanguinolenta (CSE) and cryptolepine (CAS) on neuroinflammation induced with IL-1β in SK-N-SH neuroblastoma cells. We then attempted to elucidate the mechanisms underlying the anti-neuroinflammatory effects of CAS in SK-N-SH cells. Cells were stimulated with 10 U/ml of IL-1β in the presence or absence of different concentrations of CSE (25–200 μg/ml) and CAS (2.5–20 μM). After 24 h incubation, culture media were collected to measure the production of PGE2 and the pro-inflammatory cytokines (TNFα and IL-6). Protein and gene expressions of cyclooxygenase (COX-2) and microsomal prostaglandin synthase-1 (mPGES-1) were studied by immunoblotting and qPCR, respectively. CSE produced significant (p < 0.05) inhibition of TNFα, IL-6 and PGE2 production in SK-N-SH cells. Studies on CAS showed significant and dose-dependent inhibition of TNFα, IL-6 and PGE2 production in IL-1β-stimulated cells without affecting viability. Pre-treatment with CAS (10 and 20 μM) was also found to inhibit IL-1β-induced protein and gene expressions of COX-2 and mPGES-1. Further studies to determine the mechanism of action of CAS showed inhibition of NF-κBp65 nuclear translocation, but not IκB phosphorylation. At 10 and 20 μM, CAS inhibited IL-1β-induced phosphorylation of p38 MAPK. Studies on the downstream substrate of p38, MAPK-activated protein kinase 2 (MAPKAPK2) showed that CAS produced significant (p < 0.05) and dose dependent inhibition of MAPKAPK2 phosphorylation in IL-1β-stimulated SK-N-SH cells. This study clearly shows that cryptolepine (CAS) inhibits neuroinflammation through mechanisms involving inhibition of COX-2 and mPGES-1. It is suggested that these actions are probably mediated through NF-κB and p38 signalling.Graphical abstractHighlights► Cryptolepine reduced PGE2 and cytokine production from IL-1β-stimulated SK-N-SH cells. ► Cryptolepine inhibited COX-2 and mPGES-1 expressions. ► Cryptolepine inhibited NF-κBp65 nuclear translocation, but not IκB phosphorylation. ► Cryptolepine inhibited IL-1β-induced phosphorylation of p38 MAPK and its downstream substrate kinase-MAPKAPK2.
Co-reporter:Olumayokun A. Olajide, Ravikanth Velagapudi, Uchechukwu P. Okorji, Satyajit D. Sarker, Bernd L. Fiebich
Journal of Ethnopharmacology (14 March 2014) Volume 152(Issue 2) pp:377-383
Publication Date(Web):14 March 2014
DOI:10.1016/j.jep.2014.01.027
Ethnopharmacological relevanceThe dried seed of Picralima nitida is used in rheumatic fever and as an antipyretic in West Africa. In this study we have investigated the effects of an extract obtained from the seeds of Picralima nitida (PNE) on PGE2 production in IL-1β-stimulated cells.Materials and methodsProstaglandin E2 (PGE2) was measured in supernatants of IL-1β-stimulated SK-N-SH cells using enzyme immunoassay (EIA) for PGE2. In Cell ELISA and western blot were used to evaluate the effects of PNE on protein expressions of COX-2, mPGES-1, IκB and IKK. To determine the effect of the extract on NF-κB transactivation, a reporter gene assay was carried out in HEK293 cells stimulated with TNFα. An ELISA was used to measure the roles of p38, ERK1/2 and JNK Mitogen Activated Protein Kinases (MAPKs) on anti-neuroinflammatory actions of PNE.ResultsResults show that PNE significantly inhibited PGE2 production, as well as COX-2 and mPGES-1 protein expressions in IL-1β-stimulated SK-N-SH cells. Molecular targeting experiments showed that PNE interfered with NF-κB signalling pathway through attenuation of TNFα-stimulated NF-κB transcriptional activation in HEK 293 cells. Furthermore, IL-1β-mediated phosphorylation of IκB and IKK were inhibited in SK-N-SH cells. PNE (50–200 μg/ml) also produced significant inhibition of IL-1β-induced p38 MAPK phosphorylation in SK-N-SH cells. However, phosphorylation of ERK1/2 and JNK MAPKs were achieved at 100 and 200 μg/ml of the extract.ConclusionsTaken together, these results clearly demonstrate that Picralima nitida suppresses PGE2 production by targeting multiple pathways involving NF-κB and MAPK signalling in IL-1β-stimulated SK-N-SH neuronal cells.Download high-res image (107KB)Download full-size image