Jürgen Schatz

Find an error

Name:
Organization: Friedrich-Alexander-Universit?t Erlangen-Nürnberg
Department:
Title:
Co-reporter:Miriam Seßler ; Dr. Jürgen Schatz
Chemie in unserer Zeit 2012 Volume 46( Issue 1) pp:48-59
Publication Date(Web):
DOI:10.1002/ciuz.201200559

Abstract

Das Interesse an Wasser als alternatives Lösungsmittel für Organometall-Reaktionen ist erheblich gestiegen, da Wasser nicht nur ungiftig, nicht brennbar und günstig ist, sondern auch wegen seiner einfachen Abtrennung vom organischen Produkt. Organometall-Reaktionen wie palladiumkatalysierte Kupplungen von Alkyl-/Arylhalogeniden mit bororganischen und zinnorganischen Verbindungen gehören zu den am häufigsten verwendeten Reaktionen zur Knüpfung von Kohlenstoff-Kohlenstoff-Bindungen. Die Entdeckung wasserlöslicher, sulfonierter Phosphanderivate und deren Verwendung in wasserlöslichen Palladiumkatalysatoren ermöglicht die Durchführung solcher Reaktionen im wässrigen Milieu. Auch die Olefinmetathese als eine weitere effiziente, metallkatalysierte Variante zur Kohlenstoff-Kohlenstoff-Bindungsknüpfung ist mittlerweile in Wasser möglich. Die Bemühungen hierfür beinhalteten z. B. die Verwendung wasserlöslicher Rutheniumkatalysatoren, die Zugabe von Tensiden und Additiven, Ultraschallbehandlungen, die Einführung polarer quartärer Ammoniumgruppen sowie die Kupplung an ein hydrophiles Trägermaterial (PEG). Gerade wenn es um die Entfernung von Rutheniumnebenprodukten geht, weist der letzte Punkt auch ein enormes Potential für weitere Entwicklungen auf. Wasser als Lösungsmittel erlaubt es auch, polare, wasserlösliche Substrate wie Natur- oder Wirkstoffe in nativer Umgebung direkt zur Reaktion zu bringen.

Water has attracted significant attention as an alternative solvent for organometallic reactions because it is nontoxic, nonflammable, and inexpensive, and is easily separated from organic products. Organometallic reactions, like the palladium-catalyzed couplings of organic halides with organoboron compounds (Suzuki) and organotin reagents (Stille), are among the most widely used reactions for the formation of carbon-carbon bonds. Owing to the discovery of water-soluble, sulfonated phosphane derivatives and particularly the design of water-soluble palladium-catalysts it was possible to import these reactions into aqueous media. Another efficient, metal-catalyzed, carbon-carbon bond-forming process that is nowadays possible in aqueous media is the olefin metathesis. The approaches so far include the use of water-soluble ruthenium-catalysts, surfactants and additives, ultrasonication, the introduction of polar quaternary ammonium groups or the incorporation of PEG as a water solubilizing moiety. The last point bears also a great potential for further developments in the removal of ruthenium-containing byproducts. Additionally, water is the ideal reaction environment for polar, water soluble substrates such as natural product or pharmaceuticals.

Co-reporter:Daniel T. Schühle, Joop A. Peters, Jürgen Schatz
Coordination Chemistry Reviews 2011 Volume 255(23–24) pp:2727-2745
Publication Date(Web):December 2011
DOI:10.1016/j.ccr.2011.04.005
This article exploits the special geometry of calixarene derivatives and the resulting metal binding properties with a focus on biomedical applications. The use of calixarenes as mimics of ion channels through artificial cell membranes, as mimics of metalloenzymes, and in the promising emerging field of calixarene based agents for medical imaging and radiotherapy is summarized.Graphical abstract.Highlights► Review of metal binding calixarenes with potential biological applications. ► Applications are in cation transport, enzyme mimicry for in vitro use. ► In vivo applications in radiotherapy and as MRI contrast agents.
Co-reporter:Katharina Tenbrink;Miriam Seßler;Jürgen Schatz;Harald Gröger
Advanced Synthesis & Catalysis 2011 Volume 353( Issue 13) pp:2363-2367
Publication Date(Web):
DOI:10.1002/adsc.201100403

Abstract

A new synthetic method for the preparation of cyclic malonic acid monoesters in aqueous media was developed based on the combination of a metathesis reaction and subsequent biocatalytic hydrolysis with a pig liver esterase in a one-pot synthesis. Both reaction steps proceed smoothly under optimized conditions in aqueous media requiring only a low amount of the metal catalyst for the metathesis reaction. Notably, the applied biocatalyst turned out to be highly compatible with the metal catalyst showing no significant influence on the enzyme activity.

Co-reporter:Thomas Brendgen;Tilmann Fahlbusch;Markus Frank;DanielT. Schühle;Miriam Seßler;Jürgen Schatz
Advanced Synthesis & Catalysis 2009 Volume 351( Issue 3) pp:303-307
Publication Date(Web):
DOI:10.1002/adsc.200800637
Co-reporter:Marion Rehm, Markus Frank, Jürgen Schatz
Tetrahedron Letters 2009 50(1) pp: 93-96
Publication Date(Web):
DOI:10.1016/j.tetlet.2008.10.089
Co-reporter:Tilmann Fahlbusch, Markus Frank, Gerhard Maas and Jürgen Schatz
Organometallics 2009 Volume 28(Issue 21) pp:6183-6193
Publication Date(Web):October 14, 2009
DOI:10.1021/om900642x
Two independent pathways to Ag(I)−N-heterocyclic-calix[4]arene complexes (5a,b and 6−8) starting from three calix[4]arenes bearing one or two (distal or proximal) imidazolium substituents attached at the upper rim via a methylene linker are described. Complexes 5 were synthesized using the free carbene route, and complexes 6−8 were obtained via in situ formation of the N-heterocyclic carbene by deprotonation and reaction with Ag2O. The structure of 5a could be verified by an X-ray single-crystal structure determination. 1H NMR studies of the compounds 5a,b showed dynamic behavior in solution, similar to a conformational change observed for known phosphine-based calixarene ligands. Using the imidazolium−calixarenes as precursors, NHC complexes of mercury, iridium, platinum, and ruthenium have been prepared and characterized. Additionally, cis and trans Pd(II)−N-heterocyclic-calix[4]arene complexes (3 and 13) were synthesized independently by in situ deprotonation of 2 with Pd(OAc)2 and by transmetalation using Ag(I) complex 6 as a supramolecular carbene transfer reagent, respectively. Both isomeric complexes 3 and 13 were tested as catalysts in the Suzuki−Miyaura reaction and compared to previously reported in situ systems. Both isolated complexes exhibit, independently of their geometry, the same catalytic activity, which is superior to the in situ system used for comparison.
Pentacyclo[19.3.1.13,7.19,13.115,19]octacosa-1(25),3,5,7(28),9,11,13(27),15,17,19(26),21,23-dodecaene-5,11,17,23-tetrasulfonic acid, 25,26,27,28-tetrahydroxy-, sodium salt (1:4)
[1,1'-Biphenyl]-4-carboxylicacid, ethyl ester
9H-FLUORENE-1-CARBOXYLIC ACID
Ethanone,1-[1,1'-biphenyl]-3-yl-
Ethanone,1-[1,1'-biphenyl]-2-yl-