Co-reporter:Cheng Zhou, Ting Zhang, Fei Liu, Ji Zhou, Xiaobei Ni, Ran Huo and Zhonghua Shi
Molecular BioSystems 2016 vol. 12(Issue 2) pp:362-370
Publication Date(Web):10 Dec 2015
DOI:10.1039/C5MB00733J
Adenomyosis, defined as ectopic endometrial tissue within the myometrium, can often be misdiagnosed as multiple uterine leiomyomata or endometrial thickening. We therefore performed a combined mRNA and long noncoding (lnc)RNA microarray and bioinformatic analysis of eutopic and ectopic endometria in women with adenomyosis to better understand its pathogenesis and help in the development of a semi-invasive diagnostic test. A total of 586 mRNAs were increased and 305 mRNAs decreased in the ectopic endometrium of adenomyosis compared with the eutopic endometrium, while 388 lncRNA transcripts were up-regulated and 188 down-regulated in ectopic compared with paired eutopic endometrial tissue. Bioinformatic analysis suggested a series of metabolic and molecular abnormalities in adenomyosis, which have many similarities with endometriosis. Furthermore, our study constitutes the first known report of lncRNA expression patterns in human adenomyosis ectopic and eutopic endometrial tissue.
Co-reporter:Fei Liu, Chun Zhao, Lan Liu, Hongjuan Ding, Ran Huo, Zhonghua Shi
Journal of Proteomics 2016 139() pp: 38-44
Publication Date(Web):29 April 2016
DOI:10.1016/j.jprot.2016.03.001
•235 peptides was identified in umbilical cord plasma of gestational diabetes-induced macrosomia and control groups.•Peptides’ cleavage sites analysis show they are regularly cleaved and reflect the protease activity and distribution.•Four peptides were significantly different, they may give candidate biomarkers.Fetal macrosomia, defined as a birth weight ≥ 4000 g, may affect 15–45% of newborns of women with gestational diabetes mellitus (GDM). The associations between endogenous peptides and gestational diabetes-induced macrosomia have not been investigated extensively by peptidome analysis. Here, we analyzed the umbilical cord plasma by combining ultrafiltration using molecular weight cut-off filters and liquid chromatography–tandem mass spectrometry (LC–MS/MS) to investigate potential associations of GDM with macrosomia. As macrosomic babies have increased susceptibility to obesity, diabetes and cardiovascular diseases in later life, we also aimed to identify specific biomarkers to detect these future diseases. Thirty pairs of GDM mothers and controls were randomly divided into three subgroups. We identified 235 peptides of around 1000–3000 Da, originating from 115 proteins. Analyzing the cleavage sites revealed that these peptides were cleaved in regulation, which may reflect the protease activity and distribution in umbilical cord plasma. Four identified peptides, of 2471.7, 1077.2, 1446.5 and 2372.7 Da, were significantly differentially expressed in the GDM macrosomia groups compared with controls, whose precursors may play a critical role in developing GDM macrosomia. We provide for the first time a validated GDM macrosomia peptidome profile and identify potential biomarkers linking the effects of macrosomia to later-life diseases.Biological significanceFetal macrosomia is the predominant adverse outcome of gestational diabetes mellitus (GDM), which is a frequent medical condition during pregnancy. Till now, the detailed molecular mechanisms underlying gestational diabetes-induced macrosomia are still not elucidated. With high detection sensitivity and high throughput of peptidome technology, it is now possible to systemically identify peptides possibly involved in the umbilical cord plasma of GDM induced macrosomia cases. With LC–MS/MS based quantification, totally, we identified 235 peptides originated from 115 precursor proteins. And four peptides of 2471.7, 1077.2, 1446.5 and 2372.7 Da differentially expressed between GDM cases and compared controls. A precursor protein of 1077.2 Da was fibrinogen alpha chain (FGA), which was also identified in the Ai et al. [29] study with a downregulated manner in the serum samples of GDM cases. And further analysis the cleavage pattern of the identified peptides revealed that the enzymes in tissues cleaved the protein according to their rules. Thus, this quantitative peptidome approach can identify related peptides that may play a role in the gestational diabetes-induced macrosomia, and give candidate biomarkers contributing to the development of later-life diseases in macrosomic babies.Download high-res image (154KB)Download full-size image
Co-reporter:Zhonghua Shi;Chun Zhao;Ye Yang;Hui Teng
Cellular and Molecular Life Sciences 2015 Volume 72( Issue 18) pp:3575-3586
Publication Date(Web):2015 September
DOI:10.1007/s00018-015-1905-3
In mammals, pronucleus formation, a landmark event for egg activation and fertilization, is critical for embryonic development. However, the mechanisms underlying pronucleus formation remain unclear. Increasing evidence has shown that the transition from a mature egg to a developing embryo and the early steps of development are driven by the control of maternal cytoplasmic factors. Herein, a two-dimensional-electrophoresis-based proteomic approach was used in metaphase II and parthenogenetically activated mouse eggs to search for maternal proteins involved in egg activation, one of which was poly(rC)-binding protein 1 (PCBP1). Phosphoprotein staining indicated that PCBP1 displayed dephosphorylation in parthenogenetically activated egg, which possibly boosts its ability to bind to mRNAs. We identified 75 mRNAs expressed in mouse eggs that contained the characteristic PCBP1-binding CU-rich sequence in the 3′-UTR. Among them, we focused on H2a.x mRNA, as it was closely related to pronucleus formation in Xenopus oocytes. Further studies suggested that PCBP1 could bind to H2a.x mRNA and enhance its stability, thus promoting mouse pronucleus formation during parthenogenetic activation of murine eggs, while the inhibition of PCBP1 evidently retarded pronucleus formation. In summary, these data propose that PCBP1 may serve as a novel maternal factor that is required for determining the normal timing of pronucleus formation.
Co-reporter:Hui He, Hui Teng, Tao Zhou, Yueshuai Guo, Gaigai Wang, Min Lin, Yujie Sun, Wei Si, Zuomin Zhou, Xuejiang Guo and Ran Huo
Molecular BioSystems 2014 vol. 10(Issue 3) pp:653-662
Publication Date(Web):25 Nov 2013
DOI:10.1039/C3MB70312F
Ovarian physiology and pathology are important areas of scientific research. Efforts have been made to identify the ovary-related transcriptomes in different species. However, the proteomic studies are limited. The rhesus monkey is very similar to humans, and it is widely used in the study of reproductive biology and medicine. In this study, using an optimized proteomics platform, we successfully identified 5723 rhesus ovarian proteins, of which 4325 proteins were consistently identified in all three replicates and with at least 2 unique peptides. The 4325 proteins were chosen for further analysis. Through gene ontology and pathway analyses, we obtained a preliminary understanding of the function of these proteins. A random immunohistochemistry analysis was used to determine the expression of proteins in various cell types. By comparing the genes identified in this study with genes that were reported to have relatively high levels of expression in human oocytes, we obtained genes that were predicted to play roles in maintenance of normal ovarian physiology. Searching the identified genes from this study against the MGI database gave us a list of proteins those exist in the rhesus monkey ovary and are important for female mouse reproduction as well. The overlap of genes in this study and the genes whose abnormal expression or dysfunction were reported to be associated with human polycystic ovary syndrome (PCOS) and premature ovarian failure (POF) prompted us to use the rhesus monkey to study these two common causes of female infertility. This study may provide a basis for future studies of human reproductive disorders using the rhesus monkey as a model.
Co-reporter:Minyue Ma, Xuejiang Guo, Fuqiang Wang, Chun Zhao, Zichuan Liu, Zhonghua Shi, Yufeng Wang, Ping Zhang, Kemei Zhang, Ningling Wang, Min Lin, Zuomin Zhou, Jiayin Liu, Qingzhang Li, Liu Wang, Ran Huo, Jiahao Sha and Qi Zhou
Journal of Proteome Research 2008 Volume 7(Issue 11) pp:4821-4830
Publication Date(Web):2017-2-22
DOI:10.1021/pr800392s
The mature oocyte contains the full complement of maternal proteins required for fertilization, the transition to zygotic transcription, and the beginning stages of embryogenesis. Many of these proteins have yet to be characterized. In this study, two-dimensional electrophoresis (2-DE) of mouse metaphase-II (MII) oocyte proteins, stained with silver staining or Pro-Q Diamond dye, was performed to describe the proteome and phosphoproteome of the mouse oocyte derived from ICR mice. A total of 869 selected protein spots, corresponding to 380 unique proteins, were identified successfully by mass spectrometry, in which 90 protein spots representing 53 unique proteins have been stained with Pro-Q Diamond, indicating that they are in phosphorylated forms. All identified proteins were bioinformatically annotated in detail and compared with the embryonic stem cell (ESC) proteome. A proteome reference database for the mouse oocyte was established from the protein data generated in this study, which can be accessed over the Internet (http://reprod.njmu.edu.cn/2d). This database is the most detailed mouse oocyte proteomic database to date. It should be valuable in expanding our knowledge of the regulation of signaling in oogenesis, fertilization, and embryo development, while revealing potential mechanisms for epigenetic reprogramming.