Co-reporter:Xiaoyun Wang, Hui Xu, Yanqiu Zhao, Shaoning Wang, Hiroya Abe, Makio Naito, Yanli Liu, Guoqing Wang
Materials Science and Engineering: B 2012 Volume 177(Issue 4) pp:367-372
Publication Date(Web):15 March 2012
DOI:10.1016/j.mseb.2011.12.030
The purpose of this study was to prepare a poly(lactide-co-glycolide) (PLGA) encapsulated hydroxyapatite microspheres (HAP-MSs) as injectable depot for sustained delivery of Doxycycline (Doxy). Doxy loaded HAP-MSs (Doxy-HAP-MSs) were encapsulated with PLGA by solid-in-oil-in-water (S/O/W) emulsion-solvent evaporation technique, the effects of the PLGA used (various intrinsic viscosity and LA/GA ratio) and ratio of PLGA/HAP-MSs on the formation of Doxy-HAP-MSs and in vitro release of Doxy were studied. The results showed that sustained drug release without obvious burst was obtained by using PLGA encapsulated HAP-MSs as the carrier, also the drug release rate could be tailored by changing the ratio of PLGA/HAP-MSs, or PLGA of various intrinsic viscosities or LA/GA ratio. Lower ratio of PLGA/HAP-MSs corresponded faster Doxy release, e.g. for the microspheres of PLGA/HAP-MSs ratio of 8 and 0.25, the in vitro Doxy release percents at the end of 7days were about 23% and 76%, respectively. Higher hydrophilicity (higher ratio of GA to LA) and lower molecular weight of PLGA corresponded to higher Doxy release rates. For in vivo release study, PLGA encapsulated HAP-MSs were subcutaneously injected to the back of mice, and the results showed good correlation between the in vivo and in vitro drug release. Meanwhile, the plasma Doxy levels after subcutaneous administration of PLGA encapsulated Doxy-HAP-MSs were relatively lower and steady compared to that of the un-encapsulated microspheres. In conclusion, PLGA encapsulated HAP-MSs may be a potential vehicle for the sustained delivery of Doxy.Highlights► PLGA encapsulated HAP-MSs were used for the sustained delivery of Doxycycline (Doxy, a broad spectrum tetracycline antibiotic). ► Sustained Doxy release without obvious burst was observed. ► Mechanism of the sustained Doxy release was illustrated. ► Sustained Doxy release character in vivo was also obtained, the plasma Doxy levels were relatively lower and steady compared to that of the un-encapsulated HAP-MSs.
Co-reporter:Yuqing Su, Wenya Tang, Yanzhi Song, Chunling Wang, Qingjing Tian, Xuling Wang, Jingjing Quan, Buoqun Li, Shaoning Wang, Yihui Deng
Asian Journal of Pharmaceutical Sciences (January 2017) Volume 12(Issue 1) pp:
Publication Date(Web):1 January 2017
DOI:10.1016/j.ajps.2016.07.003
The accelerated blood clearance (ABC) phenomenon which is induced by repeated injection of poly (ethylene glycol) (PEG)-coated colloidal carriers gives clinical challenge to the promising drug delivery system. It is necessary to decrease this unexpected immunological response. A novel 4-arm poly (ethylene glycol-5000)4-cholesteryl methyl amide (4-arm PEG5000-CHMA) has been synthesized. The structure of 4-arm PEG5000-CHMA was confirmed by IR and 1H-NMR spectrum. The pharmacokinetics of the tocopheryl nicotinate (TN)-loaded nanoemulsions modified with 4-arm PEG5000-CHMA or/and 1, 2-distearoyl-Sn-glycero-3-phosphoethanolamine-n-[methoxy(poly-ethyleneglycol)-2000] (mPEG2000-DSPE) have been studied. Furthermore, the ABC phenomenon has been detailed investigated in rats by TN-loaded nanoemulsions modified with 4-arm PEG5000-CHMA and mPEG2000-DSPE (CPNE). The plasma levels of TN and anti-PEG IgM antibody were determined by HPLC and ELISA, respectively. The circulation time of the CPNEs were comparable to the mPEG2000-DSPE coated nanoemulsions. Moreover, the ABC phenomenon can be decreased by CPNEs. This study designs a method to decrease the ABC phenomenon and develops a clinical promising nanoemulsion for therapeutic or imaging purpose.Download high-res image (63KB)Download full-size image