Martin Bastmeyer

Find an error

Name:
Organization: Karlsruhe Institute of Technology (KIT) , Germany
Department: Department of Cell and Neurobiology
Title: (PhD)

TOPICS

Co-reporter: Christopher Barner-Kowollik; Martin Bastmeyer;Dr. Eva Blasco;Dr. Guillaume Delaittre;Patrick Müller;Dr. Benjamin Richter; Martin Wegener
Angewandte Chemie 2017 Volume 129(Issue 50) pp:16038-16056
Publication Date(Web):2017/12/11
DOI:10.1002/ange.201704695
Abstract3D-Druck ist eine leistungsfähige Technik für die maßgeschneiderte Herstellung funktionaler Materialien. Dieser Aufsatz fasst den Stand der Technik im Hinblick auf 3D-Laser-Mikro- und -Nanodruck zusammen und erkundet die chemischen Herausforderungen, die derzeit die volle Etablierung dieser Technologie limitieren: von der Entwicklung fortgeschrittener Materialien für Anwendungen in der Zellbiologie und der Elektronik bis hin zu den bestehenden chemischen Grenzen des schnellen Schreibens mit Auflösungen unterhalb der Beugungsgrenze. Des Weiteren untersuchen wir Möglichkeiten zur Realisierung des direkten Laserschreibens mehrerer Materialien aus einem Photolack heraus, basierend auf wellenlängenselektiven photochemischen Prozessen (λ-Orthogonalität). Schließlich betrachten wir chemische Prozesse, mit deren Hilfe adaptive 3D-Strukturen geschrieben werden können, die auf externe Stimuli wie Licht, Wärme, pH-Wert oder spezifische Moleküle reagieren, sowie fortgeschrittene Konzepte für abbaubare Stützstrukturen.
Co-reporter:Christoph A. Brand, Marco Linke, Kai Weißenbruch, Benjamin Richter, ... Ulrich S. Schwarz
Biophysical Journal 2017 Volume 113, Issue 4(Volume 113, Issue 4) pp:
Publication Date(Web):22 August 2017
DOI:10.1016/j.bpj.2017.06.058
The shape of animal cells is an important regulator for many essential processes such as cell migration or division. It is strongly determined by the organization of the actin cytoskeleton, which is also the main regulator of cell forces. Quantitative analysis of cell shape helps to reveal the physical processes underlying cell shape and forces, but it is notoriously difficult to conduct it in three dimensions. Here we use direct laser writing to create 3D open scaffolds for adhesion of connective tissue cells through well-defined adhesion platforms. Due to actomyosin contractility in the cell contour, characteristic invaginations lined by actin bundles form between adjacent adhesion sites. Using quantitative image processing and mathematical modeling, we demonstrate that the resulting shapes are determined not only by contractility, but also by elastic stress in the peripheral actin bundles. In this way, cells can generate higher forces than through contractility alone.
Co-reporter:Nina Yu. Kostina;Ognen Pop-Georgievski;Michael Bachmann;Neda Neykova;Michael Bruns;Ji&x159;í Michálek;Cesar Rodriguez-Emmenegger
Macromolecular Bioscience 2016 Volume 16( Issue 1) pp:83-94
Publication Date(Web):
DOI:10.1002/mabi.201500252

Poly(ϵ-caprolactone) (PCL) nanofibers are very attractive materials for tissue engineering (TE) due to their degradability and structural similarity to the extracellular matrix (ECM). However, upon exposure to biological media, their surface is rapidly fouled by proteins and cells, which may lead to inflammation and foreign body reaction. In this study, an approach for the modification of PCL nanofibers to prevent protein fouling from biological fluids and subsequent cell adhesion is introduced. A biomimetic polydopamine (PDA) layer was deposited on the surface of the PCL nanofibers and four types of antifouling polymer brushes were grown by surface-initiated atom transfer radical polymerization (SI-ATRP) from initiator moieties covalently attached to the PDA layer. Cell adhesion was assessed with mouse embryonic fibroblasts (MEFs). MEFs rapidly adhered and formed cell–matrix adhesions (CMAs) with PCL and PCL-PDA nanofibers. Importantly, the nanofibers modified with antifouling polymer brushes were able to suppress non-specific protein adsorption and thereby cell adhesion.

Co-reporter:Nina Yu. Kostina;Ognen Pop-Georgievski;Michael Bachmann;Neda Neykova;Michael Bruns;Ji&x159;í Michálek;Cesar Rodriguez-Emmenegger
Macromolecular Bioscience 2016 Volume 16( Issue 1) pp:
Publication Date(Web):
DOI:10.1002/mabi.201670005
Co-reporter:Alexandra M. Greiner, Maria Jäckel, Andrea C. Scheiwe, Dimitar R. Stamow, Tatjana J. Autenrieth, Joerg Lahann, Clemens M. Franz, Martin Bastmeyer
Biomaterials 2014 35(2) pp: 611-619
Publication Date(Web):
DOI:10.1016/j.biomaterials.2013.09.095
Co-reporter:Benjamin Richter;Thomas Pauloehrl;Johannes Kaschke;Dagmar Fichtner;Joachim Fischer;Alexra M. Greiner;Doris Wedlich;Martin Wegener;Guillaume Delaittre;Christopher Barner-Kowollik
Advanced Materials 2013 Volume 25( Issue 42) pp:6117-6122
Publication Date(Web):
DOI:10.1002/adma.201302678
Co-reporter:Alexra M. Greiner;Benjamin Richter
Macromolecular Bioscience 2012 Volume 12( Issue 10) pp:1301-1314
Publication Date(Web):
DOI:10.1002/mabi.201200132
5,8-Dioxa-2,11-diazapentadecanedioicacid, 12-oxo-, 1-(9H-fluoren-9-ylmethyl) ester
4-[[(4-METHYLPHENYL)SULFONYLHYDRAZINYLIDENE]METHYL]BENZOIC ACID
Butanoic acid, 4-(4-formyl-2-methoxy-5-nitrophenoxy)-, methyl ester
Fmoc-O-phospho-L-serine