Collect

BASIC PARAMETERS Find an error

CAS: 1221821-41-5
MF: C36H50BNO4
MW: 571.5975
Synonyms:

REPORT BY

Peng Wang

Universitat Jaume I
follow
Co-reporter: Mingfei Xu, Min Zhang, Mariachiara Pastore, Renzhi Li, Filippo De Angelis and Peng Wang  
pp: 976-983
Publication Date(Web):20 Dec 2011
DOI: 10.1039/C2SC00973K
The rigidification of π-conjugated segments represents a feasible tactic towards energy-level engineering of organic D-π-A dyes in mesoscopic titania solar cells. In this work, comparions of four dyes with the di(3-hexylthiophene), dihexyldithienosilole, dihexylcyclopentadithiophene and N-hexyldithienopyrrole linkers have revealed some general influences of π-linker rigidification on the optoelectronic features of titania solar cells employing a cobalt(II/III) redox electrolyte, in terms of energetic and kinetic viewpoints. Compared to a dye with the di(3-hexylthiophene) linker, its three counterparts with rigidified dithiophene blocks present bathochromic and hyperchromic absorptions of solar photons. Transient absorption measurements have shown that the incorporation of Si-, C- and N-bridged dithiophene segments decelerates the dye regeneration kinetics. The rigidification of π-conjugated dithiophene linkers brings forth a general open-circuit photovoltage diminishment, in the range from 60 to 190 mV. Further insightful impedance analyses have disclosed that the open-circuit photovoltage reduction, due to the π-linker alternation from di(3-hexylthiophene) to N-hexyldithienopyrrole, is predominantly caused by an adverse downward displacement of the titania conduction band edge, despite a positive contribution from attenuated charge recombination at the titania/electrolyte interface.
Co-reporter: Mingfei Xu, Min Zhang, Mariachiara Pastore, Renzhi Li, Filippo De Angelis and Peng Wang
pp: NaN983-983
Publication Date(Web):2011/12/20
DOI: 10.1039/C2SC00973K
The rigidification of π-conjugated segments represents a feasible tactic towards energy-level engineering of organic D-π-A dyes in mesoscopic titania solar cells. In this work, comparions of four dyes with the di(3-hexylthiophene), dihexyldithienosilole, dihexylcyclopentadithiophene and N-hexyldithienopyrrole linkers have revealed some general influences of π-linker rigidification on the optoelectronic features of titania solar cells employing a cobalt(II/III) redox electrolyte, in terms of energetic and kinetic viewpoints. Compared to a dye with the di(3-hexylthiophene) linker, its three counterparts with rigidified dithiophene blocks present bathochromic and hyperchromic absorptions of solar photons. Transient absorption measurements have shown that the incorporation of Si-, C- and N-bridged dithiophene segments decelerates the dye regeneration kinetics. The rigidification of π-conjugated dithiophene linkers brings forth a general open-circuit photovoltage diminishment, in the range from 60 to 190 mV. Further insightful impedance analyses have disclosed that the open-circuit photovoltage reduction, due to the π-linker alternation from di(3-hexylthiophene) to N-hexyldithienopyrrole, is predominantly caused by an adverse downward displacement of the titania conduction band edge, despite a positive contribution from attenuated charge recombination at the titania/electrolyte interface.

Xiandui Dong

Chinese Academy of Sciences
follow

Tianyou Peng

Wuhan University
follow

Zhen LI

Wuhan University
follow

Lingyun Wang

South China University of Technology
follow

Chunyue Pan

Central South University
follow

Guipeng Yu

Central South University
follow

Min Zhang

Changchun Institute of Applied Chemistry
follow

RenZhi Li

Changchun Institute of Applied Chemistry
follow
Co-reporter: Mingfei Xu, Min Zhang, Mariachiara Pastore, Renzhi Li, Filippo De Angelis and Peng Wang  
pp: 976-983
Publication Date(Web):20 Dec 2011
DOI: 10.1039/C2SC00973K
The rigidification of π-conjugated segments represents a feasible tactic towards energy-level engineering of organic D-π-A dyes in mesoscopic titania solar cells. In this work, comparions of four dyes with the di(3-hexylthiophene), dihexyldithienosilole, dihexylcyclopentadithiophene and N-hexyldithienopyrrole linkers have revealed some general influences of π-linker rigidification on the optoelectronic features of titania solar cells employing a cobalt(II/III) redox electrolyte, in terms of energetic and kinetic viewpoints. Compared to a dye with the di(3-hexylthiophene) linker, its three counterparts with rigidified dithiophene blocks present bathochromic and hyperchromic absorptions of solar photons. Transient absorption measurements have shown that the incorporation of Si-, C- and N-bridged dithiophene segments decelerates the dye regeneration kinetics. The rigidification of π-conjugated dithiophene linkers brings forth a general open-circuit photovoltage diminishment, in the range from 60 to 190 mV. Further insightful impedance analyses have disclosed that the open-circuit photovoltage reduction, due to the π-linker alternation from di(3-hexylthiophene) to N-hexyldithienopyrrole, is predominantly caused by an adverse downward displacement of the titania conduction band edge, despite a positive contribution from attenuated charge recombination at the titania/electrolyte interface.
Co-reporter: Mingfei Xu, Min Zhang, Mariachiara Pastore, Renzhi Li, Filippo De Angelis and Peng Wang
pp: NaN983-983
Publication Date(Web):2011/12/20
DOI: 10.1039/C2SC00973K
The rigidification of π-conjugated segments represents a feasible tactic towards energy-level engineering of organic D-π-A dyes in mesoscopic titania solar cells. In this work, comparions of four dyes with the di(3-hexylthiophene), dihexyldithienosilole, dihexylcyclopentadithiophene and N-hexyldithienopyrrole linkers have revealed some general influences of π-linker rigidification on the optoelectronic features of titania solar cells employing a cobalt(II/III) redox electrolyte, in terms of energetic and kinetic viewpoints. Compared to a dye with the di(3-hexylthiophene) linker, its three counterparts with rigidified dithiophene blocks present bathochromic and hyperchromic absorptions of solar photons. Transient absorption measurements have shown that the incorporation of Si-, C- and N-bridged dithiophene segments decelerates the dye regeneration kinetics. The rigidification of π-conjugated dithiophene linkers brings forth a general open-circuit photovoltage diminishment, in the range from 60 to 190 mV. Further insightful impedance analyses have disclosed that the open-circuit photovoltage reduction, due to the π-linker alternation from di(3-hexylthiophene) to N-hexyldithienopyrrole, is predominantly caused by an adverse downward displacement of the titania conduction band edge, despite a positive contribution from attenuated charge recombination at the titania/electrolyte interface.

Jishan Wu

National University of Singapore
follow
Co-reporter: Qingbiao Qi, Xingzhu Wang, Li Fan, Bin Zheng, Wangdong Zeng, Jie Luo, Kuo-Wei Huang, Qing Wang, and Jishan Wu
pp: 724-727
Publication Date(Web):January 27, 2015
DOI: 10.1021/ol503749f
Alkoxy-wrapped N-annulated perylene (NP) was synthesized and used as a rigid and coplanar π-linker for three push–pull type metal-free sensitizers QB1–QB3. Their optical and electrochemical properties were tuned by varying the structure of acceptor. These new dyes were applied in Co(II)/(III) based dye-sensitized solar cells, and power conversion efficiency up to 6.95% was achieved, indicating that NP could be used as a new building block for the design of high-performance sensitizers in the future.