Co-reporter: Xiaoyun Gong, Yaoyao Zhao, Shaoqing Cai, Shujie Fu, Chengdui Yang, Sichun Zhang, and Xinrong Zhang
pp: 3809
Publication Date(Web):March 18, 2014
DOI: 10.1021/ac500882e
Molecular analysis at cellular and subcellular levels, whether on selected molecules or at the metabolomics scale, is still a challenge now. Here we propose a method based on probe ESI mass spectrometry (PESI-MS) for single cell analysis. Detection of metabolites at cellular and subcellular levels was successfully achieved. In our work, tungsten probes with a tip diameter of about 1 μm were directly inserted into live cells to enrich metabolites. Then the enriched metabolites were directly desorbed/ionized from the tip of the probe for mass spectrometry (MS) detection. The direct desorption/ionization of the enriched metabolites from the tip of the probe greatly improved the sensitivity by a factor of about 30 fold compared to those methods that eluted the enriched analytes into a liquid phase for subsequent MS detection. We applied the PESI-MS to the detection of metabolites in single Allium cepa cells. Different kinds of metabolites, including 6 fructans, 4 lipids, and 8 flavone derivatives in single cells, have been successfully detected. Significant metabolite diversity was observed among different cells types of A. cepa bulb and different subcellular compartments of the same cell. We found that the inner epidermal cells had about 20 fold more fructans than the outer epidermal cells, while the outer epidermal cells had more lipids. We expected that PESI-MS might be a candidate in the future studies of single cell “omics”.
Co-reporter: Zhenwei Wei, Xingchuang Xiong, Chengan Guo, Xingyu Si, Yaoyao Zhao, Muyi He, Chengdui Yang, Wei Xu, Fei Tang, Xiang Fang, Sichun Zhang, and Xinrong Zhang
pp: 11242
Publication Date(Web):October 21, 2015
DOI: 10.1021/acs.analchem.5b02115
We had developed pulsed direct current electrospray ionization mass spectrometry (pulsed-dc-ESI-MS) for systematically profiling and determining components in small volume sample. Pulsed-dc-ESI utilized constant high voltage to induce the generation of single polarity pulsed electrospray remotely. This method had significantly boosted the sample economy, so as to obtain several minutes MS signal duration from merely picoliter volume sample. The elongated MS signal duration enable us to collect abundant MS2 information on interested components in a small volume sample for systematical analysis. This method had been successfully applied for single cell metabolomics analysis. We had obtained 2-D profile of metabolites (including exact mass and MS2 data) from single plant and mammalian cell, concerning 1034 components and 656 components for Allium cepa and HeLa cells, respectively. Further identification had found 162 compounds and 28 different modification groups of 141 saccharides in a single Allium cepa cell, indicating pulsed-dc-ESI a powerful tool for small volume sample systematical analysis.