Phenol, 5-hexyl-2-phenoxy-

Collect

BASIC PARAMETERS Find an error

CAS: 877206-64-9
MF: C18H22O2
MW: 270.36608
Synonyms: Phenol, 5-hexyl-2-phenoxy-

REPORT BY

Carlos Simmerling

Stony Brook University
follow
Co-reporter: Carla Neckles, Annica Pschibul, Cheng-Tsung Lai, Maria Hirschbeck, Jochen Kuper, Shabnam Davoodi, Junjie Zou, Nina Liu, Pan Pan, Sonam Shah, Fereidoon Daryaee, Gopal R. Bommineni, Cristina Lai, Carlos Simmerling, Caroline Kisker, and Peter J. Tonge
pp: 2992-3006
Publication Date(Web):May 2, 2016
DOI: 10.1021/acs.biochem.5b01301
The enoyl-ACP reductase (ENR) catalyzes the last reaction in the elongation cycle of the bacterial type II fatty acid biosynthesis (FAS-II) pathway. While the FabI ENR is a well-validated drug target in organisms such as Mycobacterium tuberculosis and Staphylococcus aureus, alternate ENR isoforms have been discovered in other pathogens, including the FabV enzyme that is the sole ENR in Yersinia pestis (ypFabV). Previously, we showed that the prototypical ENR inhibitor triclosan was a poor inhibitor of ypFabV and that inhibitors based on the 2-pyridone scaffold were more potent [Hirschbeck, M. (2012) Structure 20 (1), 89–100]. These studies were performed with the T276S FabV variant. In the work presented here, we describe a detailed examination of the mechanism and inhibition of wild-type ypFabV and the T276S variant. The T276S mutation significantly reduces the affinity of diphenyl ether inhibitors for ypFabV (20-fold → 100-fold). In addition, while T276S ypFabV generally displays an affinity for 2-pyridone inhibitors higher than that of the wild-type enzyme, the 4-pyridone scaffold yields compounds with similar affinity for both wild-type and T276S ypFabV. T276 is located at the N-terminus of the helical substrate-binding loop, and structural studies coupled with site-directed mutagenesis reveal that alterations in this residue modulate the size of the active site portal. Subsequently, we were able to probe the mechanism of time-dependent inhibition in this enzyme family by extending the inhibition studies to include P142W ypFabV, a mutation that results in a gain of slow-onset inhibition for the 4-pyridone PT156.

Peter J. Tonge

Stony Brook University
follow
Co-reporter: Carla Neckles, Annica Pschibul, Cheng-Tsung Lai, Maria Hirschbeck, Jochen Kuper, Shabnam Davoodi, Junjie Zou, Nina Liu, Pan Pan, Sonam Shah, Fereidoon Daryaee, Gopal R. Bommineni, Cristina Lai, Carlos Simmerling, Caroline Kisker, and Peter J. Tonge
pp: 2992-3006
Publication Date(Web):May 2, 2016
DOI: 10.1021/acs.biochem.5b01301
The enoyl-ACP reductase (ENR) catalyzes the last reaction in the elongation cycle of the bacterial type II fatty acid biosynthesis (FAS-II) pathway. While the FabI ENR is a well-validated drug target in organisms such as Mycobacterium tuberculosis and Staphylococcus aureus, alternate ENR isoforms have been discovered in other pathogens, including the FabV enzyme that is the sole ENR in Yersinia pestis (ypFabV). Previously, we showed that the prototypical ENR inhibitor triclosan was a poor inhibitor of ypFabV and that inhibitors based on the 2-pyridone scaffold were more potent [Hirschbeck, M. (2012) Structure 20 (1), 89–100]. These studies were performed with the T276S FabV variant. In the work presented here, we describe a detailed examination of the mechanism and inhibition of wild-type ypFabV and the T276S variant. The T276S mutation significantly reduces the affinity of diphenyl ether inhibitors for ypFabV (20-fold → 100-fold). In addition, while T276S ypFabV generally displays an affinity for 2-pyridone inhibitors higher than that of the wild-type enzyme, the 4-pyridone scaffold yields compounds with similar affinity for both wild-type and T276S ypFabV. T276 is located at the N-terminus of the helical substrate-binding loop, and structural studies coupled with site-directed mutagenesis reveal that alterations in this residue modulate the size of the active site portal. Subsequently, we were able to probe the mechanism of time-dependent inhibition in this enzyme family by extending the inhibition studies to include P142W ypFabV, a mutation that results in a gain of slow-onset inhibition for the 4-pyridone PT156.
Co-reporter: Johannes Schiebel, Andrew Chang, Benjamin Merget, Gopal R. Bommineni, Weixuan Yu, Lauren A. Spagnuolo, Michael V. Baxter, Mona Tareilus, Peter J. Tonge, Caroline Kisker, and Christoph A. Sotriffer
pp: 1943-1955
Publication Date(Web):February 23, 2015
DOI: 10.1021/bi5014358
One third of all drugs in clinical use owe their pharmacological activity to the functional inhibition of enzymes, highlighting the importance of enzymatic targets for drug development. Because of the close relationship between inhibition and catalysis, understanding the recognition and turnover of enzymatic substrates is essential for rational drug design. Although the Staphylococcus aureus enoyl-acyl carrier protein reductase (saFabI) involved in bacterial fatty acid biosynthesis constitutes a very promising target for the development of novel, urgently needed anti-staphylococcal agents, the substrate binding mode and catalytic mechanism remained unclear for this enzyme. Using a combined crystallographic, kinetic, and computational approach, we have explored the chemical properties of the saFabI binding cavity, obtaining a consistent mechanistic model for substrate binding and turnover. We identified a water-molecule network linking the active site with a water basin inside the homo-tetrameric protein, which seems to be crucial for the closure of the flexible substrate binding loop as well as for an effective hydride and proton transfer during catalysis. On the basis of our results, we also derive a new model for the FabI-ACP complex that reveals how the ACP-bound acyl-substrate is injected into the FabI binding crevice. These findings support the future development of novel FabI inhibitors that target the FabI-ACP interface leading to the disruption of the interaction between these two proteins.